
The Xiph.Org Foundation

Anatomy of a Video Codec

The inner workings of Ogg Theora

Dr. Timothy B. Terriberry

The Xiph.Org Foundation 2

Outline
● Introduction
● Video Structure
● Motion Compensation
● The DCT Transform
● Quantization and Coding
● The Loop Filter
● Conclusion

The Xiph.Org Foundation 3

Introduction
● What is Ogg Theora?

– MC+2D DCT video codec, like MPEG, H.263, etc.

– Based on VP3, donated by On2 Technologies

– Patent unencumbered
● On2 shipped VP3 for many years
● Gave everyone a transferable, irrevocable patent license

– Primary users: live streaming & web video
● Wikipedia, Metavid, etc.
● Cortado (Java), plug-ins (vlc, xine, Quicktime, etc.),

mv_embed
● Native Firefox and Opera support soon

The Xiph.Org Foundation 4

Block Diagram

Input
Frames

Motion
Estimation DCT

Quantizaton &
Tokenization

Entropy
Encoding

Entropy
Decoding

Untokenization &
DequantizationiDCT

Motion
Compensation

Loop
Filter

Encoder

Decoder

Post
Processing

Output
Frames

The Xiph.Org Foundation 5

Outline
● Introduction
● Video Structure
● Motion Compensation
● The DCT Transform
● Quantization and Coding
● The Loop Filter
● Conclusion

The Xiph.Org Foundation 6

Color Space
● Y’C

b
C

r
: Luma, Chroma blue, Chroma red

– Luma corresponds to grayscale

– Nonlinear (not gamma corrected)
● Intensity levels near zero closer together than near 255
● This is the way human perception works
● Important for compression

– Headroom:
● Normal range of values is (16,16,16) to (219,240,240)

– Conversion: Multiple standards
● See Theora specification for details

The Xiph.Org Foundation 7

Y' Plane

Cb plane

Cr plane

Pixel Format
● Most video is 4:2:0

– Subsampled by a factor of two in each direction

– Name comes from signal bandwidth ratios in the
original analog standard

The Xiph.Org Foundation 8

Picture Size
● Frame size must be a multiple of 16
● A smaller “picture region” is actually displayed

X Offset
Picture

Pi
ct

ur
e

Y
 O

ff
se

t

Picture Width

Fr
am

e
H

ei
gh

t

Frame Width

Pi
ct

ur
e

H
ei

gh
t

Frame

Picture

(0,0)

The Xiph.Org Foundation 9

Blocks and Superblocks

...

Super Block (4x4)

Frame

(0,0)

Block

8x8

...

The Xiph.Org Foundation 10

Coded Order
● Within a superblock,

blocks are coded
along a “Hilbert curve”

● This is a fractal space
filling curve
– Fills a 2D area

– Each block is adjacent
to the next block

● Adjacent blocks are
highly correlated

0 1

23

4

5 6

7 8

9 10

11

1213

14 15

The Xiph.Org Foundation 11

Macro Blocks
● A superblock is contained within a single plane
● Macro blocks cut across all three planes

● 2x2 group of blocks in the luma plane +
corresponding blocks in the chroma planes

Macro Block (2x2)

8x8
Block

The Xiph.Org Foundation 12

Frame Types
● INTRA frames do not use motion compensation

– Can be decoded without reference to other frames

● INTER frames do use motion compensation
– Reference data in the previous frame and the most

recent intra frame (the “golden frame”)
Golden
frame frame

Current
frame

...
Intra Inter Inter Inter Inter Inter Inter

Previous

The Xiph.Org Foundation 13

Outline

Input
Frames

Motion
Estimation DCT

Quantizaton &
Tokenization

Entropy
Encoding

Entropy
Decoding

Untokenization &
DequantizationiDCT

Motion
Compensation

Loop
Filter

Encoder

Decoder

Post
Processing

Output
Frames

● Introduction
● Video Structure
● Motion

Compensation
● The DCT Transform
● Quantization and

Coding
● The Loop Filter
● Conclusion

The Xiph.Org Foundation 14

Motion Compensation
● Video changes slowly over time
● By subtracting out the previous frame, we

remove much of the information
● A motion vector is stored with each macro block

to point to the piece to copy

⊖ =

Input Reference frame Residual

The Xiph.Org Foundation 15

To code or not to code?
● Not coding a block at all uses very few bits

– The majority of compression in static scenes comes
from skipping blocks entirely

● Frame data is copied directly from the previous
frame, and no residual is sent

● If we can identify these early on, we can skip
motion search and save processing time, too
– Current encoder uses simple change thresholding

● How do we signal which blocks are coded?
– RLE+VLC

The Xiph.Org Foundation 16

Coded Block Flags
● Coded blocks are highly spatially correlated

– Try to mark entire superblocks at a time

– Inside a superblock, follow Hilbert curve

● Three-phase process
– Partition superblocks into “partially coded” and “the

rest”

– Partition “the rest” of the superblocks into “fully
coded” and “not coded”

– Partition the blocks in partially coded superblocks
into “coded” and “not coded”

The Xiph.Org Foundation 17

Coded Block Flags
● Represent each partition as a bit string, and

encode with RLE+VLC

● Code just the first bit value, and then the run
lengths: each run of bits must alternate values

● For blocks, we know the longest run is 30

VLC Code Run Lengths Compression
Ratio

0 1 100%
10x 2...3 100150%
110x 4...5 80100%
1110xx 6...9 67100%
11110xxx 10...17 4780%
111110xxxx 18...33 3056%
111111xxxxxxxxxxxx 34...4129 0.4%52%

VLC Code Run Lengths Compression
Ratio

0x 1...2 100200%
10x 3...4 75100%
110x 5...6 6780%
1110xx 7...10 6086%
11110xx 11...14 5064%
11111xxxx 15...30 3060%

Superblock Flags Block Flags

The Xiph.Org Foundation 18

Motion Search
● Want to identify the “best” motion vector

– Trade-off match quality against cost to code

– Rate-distortion optimization: cost = D + λR

– λ is the number of bits you’re willing to spend for a
unit decrease in distortion

– Current encoder uses just D in many places
● We are fixing this

● How to measure D?

– Sum of Absolute Differences: ∑ |x
i
-y

i
|

– Typically luma plane only (chroma ignored)

The Xiph.Org Foundation 19

Motion Search
● 2 reference frames to check per macro block, plus 4MV

● MV range: (-15.5,-15.5)...(15.5,15.5)

● Find best full-pel vector, then refine to half-pel

● Full search
– Very slow: 492032 pixel references per macro block

● Logarithmic search: 16384 pixel references
– Look at (±8,±8), then (±4,±4) around that, etc.

– Current encoder uses this, with fallback to full search

● Predictive search: ~1K pixel references on average
– Predict MV from neighbors in space and time

The Xiph.Org Foundation 20

Half-Pel Refinement
● Most codecs implement half-pel MV’s by

averaging 2 to 4 pixels
– Linear interpolation suffers from aliasing near edges

– Aliasing error is worst at the halfway point

● Theora: if you’re going to do something bad, at
least make it really fast
– Only averages 2 values, even with a (0.5,0.5) MV

(0,0.5) (-0.5,0.5) (0.5,-0.5) (-0.5,-0.5)(0.5,0.5)(0,0.5)

The Xiph.Org Foundation 21

Chroma Subsampling
● Theora does not support MV resolution finer

than half-pel
● Chroma planes are usually sub-sampled

– A half-pel vector from the luma plane is quarter-pel

● Round MV’s: ¼, ½, and ¾ all treated as ½
– If a luma vector averages two values, then so will a

chroma vector

● Averaging suppresses noise, and most of the
benefit of half-pel comes from this effect
– Real interpolation quality is secondary

The Xiph.Org Foundation 22

Macro Block Modes
● 8 possible modes
● NOMV: use a MV

of (0,0)
● LAST: copy the

previous MV
– LAST2 copies the

2nd to last

Macro Block Mode Reference Frame
INTRA None
INTER_NOMV Previous
INTER_MV Previous
INTER_MV_LAST Previous
INTER_MV_LAST2 Previous
INTER_MV_4MV Previous
INTER_GOLDEN_NOMV Golden
INTER_GOLDEN_MV Golden

– This is the only advantage Theora takes of MV
correlation

● 4MV: Code a separate MV for each luma block

The Xiph.Org Foundation 23

Mode Decision
● How do we decide which mode to use?

– Current code checks D for “cheaper” modes, then
tries the more expensive ones (e.g., 4MV) if they fail

● R-D optimization is better (in development)
– What are R and D?

– The cost to code the mode and the residual

– Could transform, quantize, encode for each choice
● Too expensive, and even then computing exact R is hard

– Instead, estimate them using the SAD after MC
● Giant table lookup trained on lots of video

The Xiph.Org Foundation 24

Coding Macro Block Modes
● Fixed code, dynamic alphabet
● Encoder chooses which mode corresponds to

each code word
– 6 standard lists, or explicitly send the list

– Encode with a highly skewed VLC code

● Fallback: encode each mode with 3 bits

Mode Code
0
10
110
1110
11110
111110
1111110
1111111

The Xiph.Org Foundation 25

Motion Vector Coding
● Each macro block codes between 0 and 4 MV’s

(depending on mode and coded luma blocks)
● Coded with a fixed VLC code

● Fallback: encode each component with 6 bits

MV Range Number of Bits
±0...0.5 3
±1...1.5 4
±2...3.5 6
±4...7.5 7
±8...15.5 8

The Xiph.Org Foundation 26

Outline

Input
Frames

Motion
Estimation DCT

Quantizaton &
Tokenization

Entropy
Encoding

Entropy
Decoding

Untokenization &
DequantizationiDCT

Motion
Compensation

Loop
Filter

Encoder

Decoder

Post
Processing

Output
Frames

● Introduction
● Video Structure
● Motion

Compensation
● The DCT Transform
● Quantization and

Coding
● The Loop Filter
● Conclusion

The Xiph.Org Foundation 27

The DCT Transform
● MC has removed temporal correlation
● DCT removes spatial correlation from the residual
● Approx. of ideal Karhunen-Loève Transform

– Compute the eigenvectors of the covariance matrix

– Project data onto the eigenvectors (PCA)

– But: need enough data to estimate covariance

– But: need to send the eigenvectors

● DCT is close to K-L for natural images

The Xiph.Org Foundation 28

The DCT Transform
● Applied to each 8x8 block
● In 1-D essentially a matrix multiply: y = G·x

– G is orthogonal: acts like an 8-dimensional rotation

– Basis functions:
DC AC...

The Xiph.Org Foundation 29

The DCT Transform
● In 2D, first transform rows, then columns

– Y = G·X·GT

● Basis functions:
● Two 8x8 matrix

multiplies is
1024 mults,
896 adds
– 16 mults/pixel

The Xiph.Org Foundation 30

Fast DCT
● The DCT is closely related to the Fourier

Transform, so there is also a fast decomposition
● 1-D: 16 mults, 26 adds

● 2-D: 256 mults, 416 adds (4 mults/pixel)

C4

C4

C6 S6

C6

S6

C7

S7

C7
S7

C3 S3

C3

S3

C4

C4
0

4

2

6

5

3

7

1

0

1

2

3

4

5

6

7

The Xiph.Org Foundation 31

DCT Example

Shamelessly stolen from the MIT 6.837 lecture notes:
http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture03/Slide30.html

Input Data
156 144 125 109 102 106 114 121
151 138 120 104 97 100 109 116
141 129 110 94 87 91 99 106
128 116 97 82 75 78 86 93
114 102 84 68 61 64 73 80
102 89 71 55 48 51 60 67
92 80 61 45 38 42 50 57
86 74 56 40 33 36 45 52

Transformed Data
700 100 100 0 0 0 0 0
200 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The Xiph.Org Foundation 32

Outline

Input
Frames

Motion
Estimation DCT

Quantizaton &
Tokenization

Entropy
Encoding

Entropy
Decoding

Untokenization &
DequantizationiDCT

Motion
Compensation

Loop
Filter

Encoder

Decoder

Post
Processing

Output
Frames

● Introduction
● Video Structure
● Motion

Compensation
● The DCT Transform
● Quantization and

Coding
● The Loop Filter
● Conclusion

The Xiph.Org Foundation 33

The Contrast Sensitivity
Function

● Contrast perception varies by spatial frequency

The Xiph.Org Foundation 34

Quantization Matrices
● Only lossy step in the entire process
● Divide each coefficient by a

number chosen to match the CSF
– Example matrix:

● But that’s at the visibility threshold
– Above the threshold distribution more even

● Most codecs vary quantization by scaling a
single base matrix

● Theora allows interpolation between matrices

Quantization Matrix
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 58 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

The Xiph.Org Foundation 35

DC Prediction
● DC coefficients look like a 1/8th resolution copy of

the original image: still lots of correlation
● A simple filter is used to predict each coefficient

from its neighbors
– Preceding neighbors in raster order used (not coded)

– Only those neighbors predicted from the same frame

– Filter coefficients vary by available neighbors

– As a last resort, just use the last value with the same
prediction type

● Subtract off prediction on encode, add in decode

The Xiph.Org Foundation 36

Per-block quantization
● Up to 3 quantizers can be specified per frame

– Can be used to sharpen edges,

– Reduce detail in smooth regions,

– Foreground/background regions, etc.

● Pick one to use for the AC coefs. of each block
– DC is predicted after quantization (unfortunate)

● Chosen quantizer signaled with same
RLE+VLC scheme as coded blocks

The Xiph.Org Foundation 37

Zig-Zag Scanning
● Coefficients in a block scanned in zig-zag order

– Roughly low frequency → high

– Creates long runs of zeros

The Xiph.Org Foundation 38

Tokenization
● Coefficient values are translated into one of 32

tokens + a fixed number of “extra bits”
– Fairly unique to Theora

● Tokens are entropy coded, extra bits are written
verbatim to the stream

The Xiph.Org Foundation 39

EOB Tokens
● Signals the “End Of Block”

– All the remaining coefficients are zero

– Follows Hilbert curve (spatial correlation)

● Multiple blocks combined into EOB runs
Token Value Extra Bits EOB Run Length

0 0 1
1 0 2
2 0 3
3 2 4...7
4 3 8...15
5 4 16...31
6 12 1...4095

The Xiph.Org Foundation 40

Zero Run Tokens
● A run of zeros that doesn’t end the block

Token Value Extra Bits Number of
Coefficients

Description

7 3 1...8 Short zero run
8 6 1...64 Zero run
23 1 2 One zero followed by ±1
24 1 3 Two zeros followed by ±1
25 1 4 Three zeros followed by ±1
26 1 5 Four zeros followed by ±1
27 1 6 Five zeros followed by ±1
28 3 7...10 6...9 zeros followed by ±1
29 4 11...18 10...17 zeros followed by ±1
30 2 2 One zero followed by ±2...3
31 3 3...4 2...3 zeros followed by ±2...3

The Xiph.Org Foundation 41

Coefficient Tokens
● Encode the value of a single non-zero coefficient

● Note: There’s a maximum value
– Implies a minimum quantizer

Token Value Extra Bits Coefficient Value
9 0 +1
10 0 1
11 0 +2
12 0 2
13 1 ±3
14 1 ±4
15 1 ±5
16 1 ±6
17 2 ±7...8
18 3 ±9...12
19 4 ±13...20
20 5 ±21...36
21 6 ±37...68
22 10 ±69...580

The Xiph.Org Foundation 42

Token Coding
● All of the tokens for a single coefficient are coded

before moving to the next (in zig-zag order)
– Requires all blocks to be transformed+quantized

before entropy coding

– Poor cache locality when decoding

● Tokens which span multiple coefficients are
coded when the first one would be
– This block is skipped during token decode until the

next coefficient is needed

The Xiph.Org Foundation 43

Huffman Coding
● Shannon source coding theorem:

– The best code for independent, identically
distributed variables with probability distribution {p

i
}

uses -log
2
(p

i
) bits per value

● Huffman gave an algorithm for translating
probabilities p

i
 into a prefix-free code

– Optimal when -log
2
(p

i
) is restricted to be an integer

● Main idea: code frequently occurring symbols
with fewer bits, and only use more on rare ones

The Xiph.Org Foundation 44

Huffman Tables
● VLC codes for tokens are stored in the header

– 80 possible codes to choose from

– 32 token possible token values in each code

● Divided into 5 groups of 16 by zig-zag index

● Pick one table in group 0 for the DC coefficients
● Pick one table index (0...15) to use for all four

AC groups

ZigZag
Index

Huffman
Group

0 0
1...5 1
6...14 2
15...27 3
28...63 4

The Xiph.Org Foundation 45

Encoding → Decoding
● We have all the tools: purely mechanical

Input
Frames

Motion
Estimation DCT

Quantizaton &
Tokenization

Entropy
Encoding

Entropy
Decoding

Untokenization &
DequantizationiDCT

Motion
Compensation

Loop
Filter

Encoder

Decoder

Post
Processing

Output
Frames

The Xiph.Org Foundation 46

Outline

Input
Frames

Motion
Estimation DCT

Quantizaton &
Tokenization

Entropy
Encoding

Entropy
Decoding

Untokenization &
DequantizationiDCT

Motion
Compensation

Loop
Filter

Encoder

Decoder

Post
Processing

Output
Frames

● Introduction
● Video Structure
● Motion

Compensation
● The DCT Transform
● Quantization and

Coding
● The Loop Filter
● Conclusion

The Xiph.Org Foundation 47

The Loop Filter
● Block-based codecs have blocking artifacts

– MPEG4 Part 2 and earlier used post-processing

● But if post-processing improves the image,
feeding it back into the prediction is better
– But processing is no longer optional

● H.264 also added a loop filter (years after Theora)

The Xiph.Org Foundation 48

The Loop Filter
● Run a small filter across the block edge

● Adjust the inner values base on its strength

R

(R,L)

(R,L)

lflim

x1 = x1 + lflim(R,L)

x2 = x2 - lflim(R,L)

R = 1 3 3 1

Block Boundary

x0 x1 x2 x3

The Xiph.Org Foundation 49

Outline

Input
Frames

Motion
Estimation DCT

Quantizaton &
Tokenization

Entropy
Encoding

Entropy
Decoding

Untokenization &
DequantizationiDCT

Motion
Compensation

Loop
Filter

Encoder

Decoder

Post
Processing

Output
Frames

● Introduction
● Video Structure
● Motion

Compensation
● The DCT Transform
● Quantization and

Coding
● The Loop Filter
● Conclusion

The Xiph.Org Foundation 50

The End
● After the loop filter, the frame is complete
● In both the encoder and decoder, it feeds back

in and becomes a new reference frame
● In the decoder, it is ready for display

– There’s more post-processing available
● Stronger de-blocking, de-ringing

– Much more CPU-intensive, and so optional
● We even provide an API to enable it now

The Xiph.Org Foundation 51

Future Directions
● Arithmetic/Range encoding

– Allows a fractional number of bits: 6-12% savings
for free

● Overlapped transforms
– Similar to the MDCT used in Vorbis: no blocking

artifacts

– Better energy compaction than wavelets with less
computation

● Blocking-free transforms require blocking-free
motion compensation

The Xiph.Org Foundation 52

Questions?

