

Farsight 2
Videoconferencing made easy

Olivier Crête

Origins of Farsight

● aMSN
● Free IM had no VoIP
● Each proprietary IM protocol had its own thing
● Philippe's end of studies project
● Hacked into aMSN, gaim

Original goals of Farsight

● Enable Free Software IM to do audio/video like
other platforms

● Abstract the streaming from different IM
protocols

● Hide the complexities of media streaming (of
GStreamer)

State of Farsight

● Current used in Telepathy Stream Engine
● On Nokia Internet Tablets
● Very stable
● Thin core, complex plugins
● Complex RTP plugin
● Unmaintained plugins for MSN, Yahoo

RTP plugin

● 1 to 1 audio & video calls
● Codec detection, negotiation
● Transmitters plugins

– Unicast UDP

– ICE (libjingle)

● DTMF
● Confort Noise (on Nokia Tablets)
● RTCP

Limitations

● Only one to one calls
● No lip-sync
● Video support broke abstraction
● Hard to use with non-trivial GStreamer

pipelines
● No sRTP
● Hacks for Nokia Tablets (DSP, CN)

Farsight 2: Goals

● High level objects
● Interface, helper libraries
● RTP is reference, most standard, most capable
● Also, MSN, Yahoo, etc
● One GStreamer element per protocol
● Elegance
● Automated test coverage
● Good documentation

New RTP plugin

● Keep good things from older versions
– Codec detection

– Codec negotiation

– gst elements: DTMF, CN, RTP payloaders, etc

● Use GStreamer rtpmanager
– Multi-party

– Lip-sync

– Complete RTP feature set
● Including full RTCP, SSRC collision detection, etc

Transmitters

● Multi Unicast UDP (with STUN)
● Multicast UDP
● Interactive Connection Establishment (ICE)
● Pidgeons, etc

High level objects

● Codec
● Candidate
● Participant

– One person with synchronized streams

● Session
● Stream
● Conference

Session

● One type of media (audio, video, etc)
● One local media source

– One microphone

– One camera

– File

– etc

● Multiple stream from other participants
● RTP session

Stream

● One participant in one session
● Use for communication with participant

– Codecs

– Candidates

● Remote media comes out of here

Conference

● The GStreamer element
● Multiple synchronized sessions
● Contains everything else

Conference

Session
(audio)

Session
(video 1)

Participant
Bob

Participant
Alice

Session
(video 2)

Stream StreamStreamStream Stream Stream

Current status

● Base RTP implementation
– Most of Farsight 1 features, except DTMF & CN

– Multi-party

– Lip-sync

– Python bindings

– Some automated tests

– Unicast, Multicast transmitters

10 way conference

Demo

● 3 way conference ...
● Oops ???

Example
import farsight, gst, gobject

loop = gobject.MainLoop()

pipeline = gst.Pipeline()

conference = gst.element_factory_make ("fsrtpconference")

conference.set_property ("sdes-cname", "tester@2.3.4.5")

pipeline.add (conference)

session = conference.new_session (farsight.MEDIA_TYPE_AUDIO)

participant = conference.new_participant ("bob@1.2.3.4")

stream = session.new_stream (participant, farsight.DIRECTION_BOTH, "multicast")

stream.set_remote_codecs(session.get_property("local-codecs"))

candidate = farsight.Candidate()

candidate.ip = "224.0.0.110"

candidate.port = 3442

candidate.component_id = farsight.COMPONENT_RTP

candidate.proto = farsight.NETWORK_PROTOCOL_UDP

candidate.type = farsight.CANDIDATE_TYPE_MULTICAST

stream.add_remote_candidate (candidate)

candidate.port = 3443

candidate.component_id = farsight.COMPONENT_RTCP

stream.add_remote_candidate (candidate)

audiosource = gst.factory_element_make ("audiotestsrc")

pipeline.add (audiosource)

audiosource.get_pad ("src").link(session.get_property ("sink-pad"))

def _src_pad_added (stream, pad, codec, pipeline):

 audiosink = gst.element_factory_make ("alsasink")

 pipeline.add (audiosink)

 audiosink.set_state (gst.STATE_PLAYING)

 pad.link (audiosink.get_pad ("sink"))

stream.connect ("src-pad-added", _src_pad_added, pipeline)

gobject.idle_add (lambda p: p.set_state(gst.STATE_PLAYING), pipeline)

loop.run()

The Future

● Complete RTP implementation
– DTMF

– Confort noise

– sRTP

– Stabilize

● Port Telepathy to use it
● Use it in all Free clients so they can gain AV

capabilities

Thank you

● Farsight is brought to you by Collabora
– Phillippe Kalaf

– Youness Alaoui

– Olivier Crête

● Questions?

http://farsight.freedesktop.org/

http://git.collabora.co.uk/

http://www.collabora.co.uk/

