2 Fixing XFS
Sgl Filesystems Faster

FOR RESULTS

Dave Chinner <dgc@sgi.com>

Barry Naujok <bnaujok@sgi.com>

mailto:dgc@sgi.com

Overview

 The “Repair Problem”

 The “First Attempt”

 An “Alternate Solution”

* Analysis of Failure and Success
 The “Final Design”

e Results

* Futures

01/30/08 Slide 2 Sgl

INNOVATION
SGI PROPRIETARY . FORRESULTS’

The “Repair Problem”

* Filesystem capacity grows faster than disk
capabilities

* Number of objects indexed grows faster than the
rate we can read them

 Repair reads every object in the filesystem

 Therefore, if repair doesn't get smarter, it will
take longer as capacity grows

* 4 years ago a customer was very unhappy with
xfs repair taking 8 days to complete.

01/30/08 Slide 3 Sgl

INNOVATION
SGI PROPRIETARY . FORRESULTS’

What Does xfs repair Do?

nase 1 - finds and validates primary metadata
nase 2 - reads in free space and inode locations
nase 3 — inode discovery and checking

nase 4 — extent discovery and checking

nase 5 - rebuild free space and inode indexes
nase 6 — check directory structure

nase 7 — check link counts

°
U U U U U U U

01/30/08 Slide 4 Sgl

INNOVATION
SGI PROPRIETARY . FORRESULTS’

The “First Attempt”

* Was aimed at improving xfs repair on Irix
 No kernel block device caching in Irix

* Lots of relatively slow CPUs but with high I/O
throughput

 Phases 3 and 4 scan each Allocation Group (AG)
sequentially, but each AG is mostly self
contained

01/30/08 Slide 5 Sgl

INNOVATION
SGI PROPRIETARY . FORRESULTS’

The “First Attempt”, Part 2

* Add hash-based block caching to xfs repair

* Use a thread per AG and process multiple AGs at
once
e Little I/O optimisation

— mainly relying on multiple CPUs being able to issue I/O faster
than a single process

— some optimisation by batching synchronous readahead I/O

* Block based caching was released for Linux in
version 2.8.0

e Multithreading was released in version 2.8.11

&
01/30/08 Slide 6 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

An “Alternate Solution”

01/30/08 Slide 7 Sgl

SGI PROPRIETARY

Patch to 2.7.18 created by Agami Systems

Used intelligent object based prefetch to prime
the kernel buffer cache

Processed inodes passed off to prefetch threads
to read in associated metadata

Processes only a single AG at a time

Faster on a single disk than 2.7.18 until it ran out
of memory

Much faster than 2.7.18 on multi-disk arrays

INNOVATION
FFFF

Success and Failure

250Gb SATA Disk 5.5TB RAID5 Array
1.65M inodes 37M inodes
650 22500
6007 20000 _—
550
500 W27.18 17500 H2.7.18
450 M2.7.18 + 15000 W2.7.18 +
400 Agami Agami
350 - []2.8.0 12500 []2.8.0
W 2.5.10 H2.8.10
300 - B 2.8.20 10000 I 2.8.20
250 -
200 - 7500
150 5000
1007 2500
50 - |
0- 0.
Runtime (sec) Runtime (sec)

&
01/30/08 Slide 8 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Analysis of Success and Failure

 We started comparison of 2.7.18 + Agami's
patch against 2.7.18 and 2.8.20

e Surprise! In almost all cases, 2.8.x was much
slower than 2.7.18.

* Block caching in xfs repair was not working at
all well on Linux

 Threading across AGs making it even worse.

01/30/08 Slide 9 Sgl

INNOVATION
SGI PROPRIETARY . FORRESULTS’

Analysis of Failure

* The optimisations for Irix focussed on CPU level
parallelism
— CPU bound not I/0O bound

e Linux analysis was done on CPUs 2-3x faster and
a smaller 1/O subsystem
— 1/0 bound, not CPU bound

 Adding more seeks into an already 1/O bound
setup makes it slower, not faster

01/30/08 Slide 10 Sgl

INNOVATION
SGI PROPRIETARY . FORRESULTS’

Analysis of Success

e The Agami patch used 10 threads to prefetch
objects from a queue of 100, and adds 10
objects at a time to the prefetch queue

* Prefetch threads do no processing, only prime
the kernel block device cache

* Processing thread feeds the prefetch queue as it
processes objects it has read

 Speed up due to removing I/O latency in the
processing thread.

01/30/08 Slide 11 Sgl

INNOVATION
SGI PROPRIETARY FOR RESULTS

Rejecting Success!

 The Agami patch was superior to existing
threading but we rejected it

 Not a cross-platform solution

— needs to run on Irix and FreeBSD as well, which lack raw
block device caching in the kernel

e Other technical reasons:

— non-trivial porting effort to 2.8.x

— Can not control cache usage or low memory readahead
thrashing

— Does not optimise I/O patterns at all

&
01/30/08 Slide 12 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Are We Crazy? (YES!)

 But we'd seen the light!

e Object based prefetch reduces I/O latency within
an AG to speed up per-AG processing

* Per-AG parallelism allows saturation of larger,
more complex storage configurations

 We could combine the two methods and go even
faster!

01/30/08 Slide 13 Sgl

INNOVATION
SGI PROPRIETARY . FORRESULTS’

Further Analysis

* Further analysis on a single threaded repair:
— Tracing exact order of 1/O from repair process

— ldentifying common patterns of metadata
e often contiguous
 lots of single blocks separated by small number of data blocks

— identifying sub-optimal I/O patterns
* backwards seeks
» seeks across a large portion of the disk

e Looking for ways to sequentialise and reduce the
number of 1/Os the repair process issued.

&
01/30/08 Slide 14 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

The “Final Solution”

* All patches included in xfs repair version 2.9.4
 Added a pair of per-AG prefetch queues

— one for blocks ahead of the current location
— one for blocks behind current location
— Second pass for “behind blocks” removing backwards seeks.

* Prefetch threads process the queue
— identify contiguous blocks and metadata dense sparse ranges
— issues single large I/O and throws away non-metadata blocks

— uses bandwidth instead of seeks to read metadata blocks
close together

&
01/30/08 Slide 15 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

The “Final Solution”, Part 2

* Processing thread could stall on blocks in
“behind queue”
— prefetch threads switch queues if the primary block queue
starts to run low
* Block cache needed work:
— needed locking to be thread-safe

— Different phases read metadata in different block sizes
* Used to purge cache between phases and reread blocks
* Made all I/O sizes the same -> no re-read between phases

&
01/30/08 Slide 16 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

The “Final Solution”, Part 3

* Phase 6 — directory scanning was improved

— NOW uses same inode scanning as Phase 3+4

— visits each directory and inode counting links in a more 1/O
efficient manner

e Phase 7 - link count verificaton
— needed another inode scan to record link counts in inodes

— now recorded in Phase 3 and compared to calculated counts
from Phase 6

— only does 1I/0 if they differ

&
01/30/08 Slide 17 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

The “Final Solution”, Part 4

e Per-AG parallelism enhanced with “ag _stride”
— avoids parallel processing of AGs on same disks

— If phase 3 does not overflow the cache, phase 4 is fully
parallelised without needing I/O

 Low memory behaviour optimised

— cached blocks given priority based on:
* how likely they are to be used again
* how expensive they were to read in initially

— low priority blocks purged first when cache overflows
— reuse of free blocks to prevent heap fragmentation

&
01/30/08 Slide 18 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Generating Test Filesystems

Need to simulate aged filesystems

Script runs at least 10 processes in parallel

 Each process

— creates variable sized files at a varying directory depth
— uses small direct 1/Os to cause non-optimal allocation patterns
— 10% probability of deleting a file instead of creating.

e Results in:

— large and fragmented directory structures
— physically separate inode chunks

— Generates fragmented files and hence randomly varying
inode extent lists

&
01/30/08 Slide 19 Sgl
INNOVATION

SGI PROPRIETARY

FOR RESULTS’

The Results

 Test system #1 — Desktop/Workstation

— dual processor x86 64, 2GB RAM, single 250GB SATA disk
* 100,000 inodes, 7% full
* 400,000 inodes, 100% full

815,000 inodes, 100% full

1.65M inodes, 100% full

5.7M inodes, 100% full

11M inodes, 37% full

17M inodes, 100% full

&
01/30/08 Slide 20 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

250GB SATA Disk - 100,000 Inodes

250GB SATA Disk - 100,000 Inodes

45

40

35

30

W2.7.18

B Agami (2.7.18)
[]2.8.20
W24

25

20

15

Runtime (sec)

10

Z h

[[[
Phasel Phase2 Phase3 Phase4 Phase5 Phase6 Phase?7 Total

&
01/30/08 Slide 21 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

250GB SATA Disk - 400,000 Inodes

250GB SATA Disk - 400,000 Inodes

180

160 —

140 —

120 —

W27.18

100 — B Agami (2.7.18)
[]2.8.20

80 — W294

Runtime (sec)

60

40

0 I I T

[[
Phasel Phase?2 Phase3 Phase4 Phase5 Phase6 Phase?7 Total

&
01/30/08 Slide 22 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

250GB SATA Disk - 800,000 Inodes

325
300
275
250
225
200
175
150
125
100

75

50

25

Runtime (sec)

01/30/08

SGI PROPRIETARY

250GB SATA Disk - 800,000 Inodes

L

[[[[
Phasel Phase?2 Phase3 Phase4 Phase5 Phase6

Slide 23

[
Phase 7 Total

W2.7.18

B Agami (2.7.18)
[]2.8.20
W24

®
INNOVATION

FOR RESULTS’

250GB SATA Disk — 1.65M Inodes

250GB SATA Disk - 1.65M Inodes

650 —
600 —
550 —
500 —
450 —

400 — W27.18

350 L B Agami (2.7.18)
[12.8.20

300 — W294

250
200
150
100
50 h

0 .

[[[[[
Phasel Phase?2 Phase3 Phase4 Phase5 Phase6 Phase?7 Total

&
01/30/08 Slide 24 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Runtime (sec)

250GB SATA Disk - 5.7M Inodes

250GB SATA Disk - 5.7M Inodes

3750
3500
3250
3000
2750

2500
2250 W27.18

B Agami (2.7.18)
2000 [12.8.20
1750 W24

1500 l 2.9.4+bhash=65536
1250 B

1000
750
500
250

0 [[[[
Phasel Phase?2 Phase3 Phase4 Phase5 Phase6 Phase?7 Total

&
01/30/08 Slide 25 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Runtime (sec)

250GB SATA Disk - 11M Inodes

14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Runtime (sec)

250GB SATA Disk - 11M Inodes

[]

Hillx wm_d

[[
Phase 1 Phase?2

01/30/08 Slide 26

SGI PROPRIETARY

Phase 3 Phase4 Phase5 Phase6 Phase?7 Total

W27.18

B Agami (2.7.18)

[]2.8.20
W24

®
INNOVATION

FOR RESULTS’

250GB SATA Disk - 17M Inodes

250GB SATA Disk - 17M Inodes

10000

9000

8000

7000 —

6000 . m2.7.18

B Agami (2.7.18)

5000 - []2.8.20 + bhash=4096
W29.4

4000

Runtime (sec)

3000

2000

1000

0 [[
Phase1l Phase2 Phase3 Phase4 Phase5 Phase6 Phase?7 Total

&
01/30/08 Slide 27 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

250GB SATA Disk — Runtime Scaling

Cache < Memory
650 —

600 —
550 —
500 —
450 —
400 —
350 —
300 —

250
200
150
100
50 -

Runtime (sec)

100k 400k 815k 1.65M
of inodes in the filesystem

01/30/08 Slide 28

SGI PROPRIETARY

W27.18

B Agami (2.7.18)
[]2.8.20
W29.4

Runtime (sec)

14000

Cache > Memory

13000
12000

11000

10000
9000

8000

7000
6000

5000

4000
3000
2000
1000

5.7M 11M 17M
of inodes in the filesystem

®
INNOVATION

FOR RESULTS’

250GB SATA Disk — Inode Processing Rate

250GB SATA Disk - Inode Processing Rate

Bigger is Better

S 5000
& 4500

)

¢ 4000

o)

S 3500- W27.18

é 3000 5Agami(2.7.18)
< 2.8.20

H 2500 H294

o 2000 - B ext3

S 1500-

O

n

100k 400k 815k 1.65M 5.7M 11M 17M
Number of Inodes in the filesystem

&
01/30/08 Slide 29 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

More Results

 Test system #2 —large server

~ 4pia64, 48GB RAM:

e 5-way RAIDO stripe of 4+1 hardware RAID5 luns, 5.5TB capacity
— 6M inodes, 80% full
— 30M inodes, 100% full
— 300M inodes, 60% full

&
01/30/08 Slide 30 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

5.5TB Volume - 6M Inodes

5.5TB Volume - 6M Inodes

750
700 —
650 —
600
550
500
450
400
350
300
250
200
150
100

50

0 \ T

Phasel Phase2 Phase3 Phase4 Phase5 Phase6 Phase?7 Total

&
01/30/08 Slide 31 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

W2.7.18

B Agami (2.7.18)
[]2.8.20
W24

Runtime (sec)

5.5TB Volume - 30M Inodes

5.5TB Volume - 30M Inodes

6500
6000 T
5500 —
5000 —
4500 —

4000 _— W27.18

3500 I B Agami (2.7.18)
[1]2.8.20

3000 — Hl29o.4

2500 —
2000 —
1500 —
1000 —

50(; Jr

[[[[[
Phase 1l Phase 2

[[
Phase 3 Phase4 Phase5 Phase6 Phase?7 Total
[]
01/30/08 Slide 32 S gl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Runtime (sec)

5.5TB Volume - 300M Inodes

5.5TB Volume - 300M Inodes

120000
110000 —
100000 —
90000 —
80000 —

2718
70000 I B Agami (2.7.18)

60000 - []2.8.20
50000 HW294

40000]
30000]
20000 F

10000]
. - B |

[[
Phase1l Phase2 Phase3 Phase4 Phase5 Phase6 Phase?7 Total

&
01/30/08 Slide 33 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Runtime (sec)

5.5TB - 300M Inodes, Part 2

5.5TB - 300M Inodes, ag_stride

50000

45000
40000

35000

30000

25000
20000

Runtime (sec)

15000

W27.18

B Agami (2.7.18)

W29o.4

B 2.9.4 + ag_stride=1
[2.9.4+ags=1+pf=16

10000
5000

[[
Phase1l Phase2 Phase3 Phase4 Phase5 Phase6 Phase?7

01/30/08 Slide 34

SGI PROPRIETARY

Total

®
INNOVATION

FOR RESULTS’

5.5TB Volume — Runtime Scaling

5.5TB Volume - Runtime Scaling

120000
110000 .
100000
90000
g 80000 H27.18
L 70000 Bl Agami (2.7.18)
£ 60000 Moo
+ 50000 MW 2.9.4+ags=1
03: 40000 B 2.9.4+ags=1+pf
30000
20000
10000
0 .

6M 30M 300M
of inodes in the filesystem

&
01/30/08 Slide 35 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

5.5TB Volume — Runtime Scaling

5.5TB Volume - Runtime Scaling

50000

45000

40000
—~ 35000
o HW27.18
W 30000 B Agami (2.7.18)
£ 25000 W24
= B 2.9.4+ags=1
= 20000 M 2.9.4+ags=1+pf
S5
o 15000

10000

5000

0 ==

6M 30M 300M
of inodes in the filesystem

&
01/30/08 Slide 36 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

5.5TB Volume — Inode Processing Rate

5.5TB Volume - Inode Processing Rate

120000
110000 . .
Bigger is Better
‘5 100000
% 90000
)
@ 80000
©
© 70000 W27.18
q) []2.8.20
"r'c' 50000 H294
o 40000 B 2.9.4+ags=1
% 30000 M 2.9.4+ags=1+pf
A 20000
10000 -
O |

6M 30M 300M
Number of Inodes in the filesystem

&
01/30/08 Slide 37 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

5.5TB Volume — Low Memory

5.5TB Volume - Low Memory

2000
1800 -

1600

1400 -

Il 48GB RAM
I 2GB RAM

1200 -

1000 -

800 -

Runtime (sec)

600 -

400 -

200

2.7.18 Agami (2.7.18) 2.9.4
Tests used the 30M inode filesystem

&
01/30/08 Slide 38 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Futures

e Memory usage reductions
— allow larger filesystems to be checked in small RAM configs
— Introduce more efficient indexing structures
— Use extents for indexing free space

 Performance
— Multithreading of Phase 6

— Directory name hash checking scalability
— Trade memory usage savings for larger caches

e Robustness

— Phase 1 on badly broken filesystems
— Preservation of broken directories

&
01/30/08 Slide 39 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

Questions?

&
01/30/08 Slide 40 Sgl
INNOVATION

SGI PROPRIETARY FOR RESULTS

