An Introduction to Multi Threaded
Programming with POSIX Threads and Linux

[

invent

Liam Widdowson [Ilbw@telstra.com]
Hewlett-Packard Consulting

January 12, 2001

Contents

1 Preface
1.1 General Portability L.
1.2 POSIX Threads Portability
2 Introduction
2.1 Definition L o
2.2 BriefHistory
2.3 Motivation

3 Thread Models

3.1 User Space Threads
3.1.1 Overview
3.1.2 Architecture

3.2 Kernel Space Threads
3.2.1 Overviewo
3.2.2 Architecture L

3.3 Kernel and User Space Threads
3.3 1 Overviewo
3.3.2 Architecture o

4 LinuxThreads
41 Overview

4.2 Simple Kernel Threads Example 15

4.3 Developing with LinuxThreads 20

5 Programming with POSIX threads 21
5.1 POSIX thread facilities 21
5.2 POSIX thread creation 22
5.2.1 Threaded version 25

5.2.2 Forking version 26

5.2.3 Performance Comparison Graph 28

5.2.4 Performance Comparison Analysis. 29

5.3 Mutual Exclusion o L. 30
5.4 Signaling and Synchronisation 34
5.5 UNIX Signal handling 40
5.6 One time operations 44
5.7 Thread Cancellation 46
5.8 Forking and Threads 51
5.9 Using Non-thread Safe Functions 52
5.10 Advanced Threading Topics Not Covered 53

6 Acknowledgments 55

1 Preface

1.1 General Portability

New open source applications are being released each day. Many of the pro-
grammers who develop open source software may do so on a single platform
such as Linux. Far too much open source software is not portable out of the
box. Such software typically requires non-trivial changes to compile or work
reliably on other operating systems.

Portability is a key component to producing good quality, reliable software.
Developing and testing software on multiple platforms helps iron out obscure
bugs that many seldom be seen on a single hardware architecture or operat-
ing system.

It is a disservice to the developer’s efforts if no attempt is made to make
software portable. Wherever possible, a developer should use what is avail-
able in the POSIX APIs and not unnecessarily use operating system specific
system calls or third party libraries. If system specific functions must be
used, they should be placed in pre-processor condition statements. When
designing software, thought should be given to how the software may behave
on other software and hardware platforms (e.g different byte order).

Our great and fearless leader Linus Torvalds one said:

Porting this new operating systems to other platforms was really
not on my mind at the beginning. At first I just wanted something
that would run on my 386 [1]

It is important that developers do not fall into the same trap as Linus did.
This oversight meant that a great deal of internal re-development was re-
quired to get Linux to a state where it could be ported in a straight forward
manner. Most of the popular open source software has been extensively
ported to other platforms (e.g Sendmail, BIND, NetBSD). It could indeed
be argued that portability is a key component to the success of a particular
piece of software.

1.2 POSIX Threads Portability

Portability is imperative when developing with POSIX threads. The POSIX
thread API abstracts its data types from the underlying data storage struc-
tures. Developers should never make any assumptions in regards to how
POSIX thread data types, the scheduler or the threading model are imple-
mented by the vendor. All POSIX thread data types should be considered
opaque [2].

The importance of portability will become more apparent as we delve further
into POSIX threads.

2 Introduction

2.1 Definition

In a general sense a thread can be considered as a scheduling entity. More
specifically consider a thread as an independent flow of control within a
scheduling entity. In a typical Unix implementation, a thread will share the
same address space, file descriptors, text and data segments of its parent
process. Each thread has its own private stack, register context and program
counter.

2.2 Brief History

The concept of a thread (as an independent flow of control) dates back to
1965 with the Berkeley Timesharing System. However, at that time they were
known as processes, not threads [3]. Processes interacted with what would
now be considered traditional Inter-Process Communication (IPC) means
such as semaphores and message passing. One of the first thread implemen-
tations was developed on Multics at Bell Laboratories during early 1970.
It used multiple stacks in a single process to support multiple background
compilations [4]. In the early 1980s, micro-kernel based operating systems
such as Amoeba and Chorus provided lightweight processes that shared the
address space of a single standard process [4].

Threads as we have come to know them today were created as a part of the
Open Software Foundation’s Distributed Computing Environment. OSF’s
DCE threads is a complete user space implementation based on an early
POSIX threads draft. It has been ported extensively to many operating
systems thanks to its modular design. DCE could typically be ported to
a new operating system in a matter of days with some assembly required
for context switch routines [2]. Today, threads are defined by the POSIX
1003.1¢-1995 standard. Extensions to the standard have been defined by
The Open Group as part of the Single UNIX Specification V2. Additionally,
many vendors have added non-portable system specific extensions.

2.3 Motivation

Most non-trivial applications must perform several tasks at once. Of those
applications some or all of those tasks may be independent of each other and
may lend themselves to parallel execution. A mail transport agent provides
an excellent example - a traditional implementation uses a listener process
that waits for requests and forks a new process to service each new client.
Such an architecture has some disadvantages - forking each process adds
significant overhead as fork(2) is an expensive system call (even if copy-on-
write functionality is provided within the kernel) [5]. As each process has it’s
own address space it must use standard IPC facilities such as semaphores or
shared memory to communicate. Some of these calls are relatively expensive
and retard the application’s performance.

Threads address many of the aforementioned issues. Threads have a com-
mon address space which provides simplified data sharing and lightweight
process creation. Additionally, threading environments provide advanced
data types which assist in providing a more natural style of parallel pro-
gramming.

3 Thread Models

There are three generally accepted models used in the implementation of
threads on Unix variant operating systems. Each model has its own set
of advantages and disadvantages. The following section examines the three
models.

3.1 User Space Threads
3.1.1 Overview

A multi-threading sub system may be implemented entirely in user space.
This model is typically referred to as M x 1 threads (i.e M user space threads
are contained within one kernel space scheduling entity). Typically, imple-
mentations of this model are based on the POSIX threads draft 4. OSF’s
DCE is one such implementation. A user space library creates, terminates,
schedules and synchronises threads. These threads are not directly visible to
the kernel, in fact, the kernel is unaware that the single process which holds

7

the threads is any different from other processes.

This model provides a performance benefit as each thread context switch
does not traverse the user/kernel space boundary. However, there are also
disadvantages associated with this model - All threads reside within a single
kernel space scheduling entity (typically a Unix process). This means that
a only single processor may be utilised to schedule all threads. Within uni-
processor environments this may not represent a significant issue, however in
multi-processor environments this model may be unacceptable.

Further, if a single thread blocks on a system call such as read(2), the en-
tire process and all associated threads block. Many user space libraries help
alleviate this problem by using non-blocking I/O. However, there are still
performance and compatibility issues associated with this work-around (e.g
not all interfaces support non-blocking I/0).

Essentially, a user-space thread library can provide concurrency (i.e the ap-
pearance of multiple tasks being performed at once) but can never provide
parallelism (i.e multiple tasks performed at the same instance in time on
separate processors).

Operating systems which implement this threading model include:
FreeBSD and OpenBSD

3.1.2 Architecture

| user space thread scheduler

- - - - - — — /1

I
I
I t hr ead t hr ead t hr ead I
| I
3 I | I
user space
kernel space
ker nel
entity
Advantages Disadvantages

Context-switches performed en-

tirely in user mode

Poor performance due to block-
ing system calls and/or associated
code complexity to avoid them

Straight forward implementation

Unable to use multiple processors

3.2 Kernel Space Threads
3.2.1 Overview

Unlike user space threads which do not involve any thread specific kernel
interaction, kernel space threads rely on it. The kernel space thread model is
often referred to as the 1 x 1 thread model (i.e one thread maps to one kernel
space entity). Typically, implementations may map each single thread to a
single kernel entity such as a standard Unix process or a more lightweight
kernel thread.

Each thread is scheduled independently by the kernel scheduler so if a thread
blocks it will not effect any other thread. However, creation, synchronisation
and termination of kernel threads may suffer some performance problems
when compared to user space threads. The kernel must be involved in oper-
ations such as requesting a memory lock or thread scheduling. Further, each
kernel thread or process takes up valuable kernel resources which inhibits
the creation of a large number of threads (most operating systems will only
allow an arbitrary number of threads to be created system wide). Whilst
the overhead may be greater, kernel threads do offer true parallelism as each
thread may run independently on separate physical processors.

Operating systems which implement this threading model include:
HP-UX 11 and Linux

10

3.2.2 Architecture

t hr ead t hr ead t hr ead

user space

kernel space]

r—-——FkF--—--—--F-=- - -

| ker nel ker nel ker nel
entity entity entity |

kernel space entity scheduler |

L - - - - - —

Advantages Disadvantages

Able to use multiple processors Context switches performed en-
tirely in kernel mode

Improved performance when cop- | Decreased performance with large
ing with blocked system calls, etc | number of threads

11

3.3 Kernel and User Space Threads
3.3.1 Overview

Kernel and user space threads are often referred to as M x N threads (i.e
M user space threads within N kernel entities). The kernel and user space
threading model provides a “best of both worlds” approach.

This model requires co-operation between the kernel scheduler and a user
space thread library/scheduler. Essentially, sets of threads are bound to in-
dividual kernel entities. This allows the majority of context-switches to occur
in user mode whilst still using multiple kernel entities to provide parallelism.
For example, an application may have nine threads which are spread across
four kernel entities. This would allow the application to take advantage
of multi-processor hardware whilst still traversing the user-kernel boundary
as little as possible. In situations where a thread blocks in a system call,
another thread is immediately scheduled thus not halting the execution of
threads that are bound to the same kernel entity.

Operating systems which implement this threading model include:
IRIX, Solaris and Tru64

12

3.3.2 Architecture

— - - - - - - — - — = = = — — — 4

user space thread scheduler

| |
| t hread thread t hr ead |
|
|
| | 1 |
|
user space
kernel space
r——— |- -4 - - — — —
| |
| ker nel ker nel |
entity entity |
|
|
kernel space entity scheduler |
L - - - - - - - - - - - - - - - - _
Advantages Disadvantages

Able to use multiple processors

Complex system implementation

Improved performance with
blocked system calls, etc

Most context switches in user mode

13

4 LinuxThreads

4.1 Overview

Linux implements the 1 x 1 kernel space threading model. Thread creation
at a kernel level is performed with clone(2) system call. Under Linux, the
clone(2) system call is a generalisation of fork(2). Thus a thread under
Linux is not significantly different from a standard heavy-weight Unix pro-
cess. When a process creates its first thread, a total of three threads will
be active. The initial or main() thread (process), the newly created thread
and a manager thread which helps performs scheduling activities. This is
significantly different from implementations such as Solaris and Tru64 which
have separate kernel and user space entities to represent threads.

Linux’s kernel developers have made a specific decision to support this model
as they believe it removes the complexity associated with implementing an-
other entity and scheduler within the kernel. Threads are created, terminated
and scheduled by the same code that does so for processes. Apart from pro-
viding simplicity, the rationale behind this architecture choice is that Linux
has exceptionally fast context-switch code and this negates what is one of the
biggest problems associated with 1 x 1 implementations - context switch per-
formance. However, this simplicity comes with an inherent problem - Linux
will never truly be POSIX 1003.1¢-1995 compliant without specific support
within the kernel for threads.

14

© 0 N O A W N e

e e e
w N = O

It is for this reason that threads under Linux do not provide a significant
performance benefit as they do on other platforms. Nonetheless, threads pro-
vide a more natural parallel style suitable for parallel programming. However,
keep in mind portability - a threaded application will perform significantly
better than a forking application on most other operating systems.

4.2 Simple Kernel Threads Example

The following source code was posted by Linus Torvalds to the Linux kernel
mailing list in 1996. It provides a basic example of how the clone(2) system
call may be used to implement kernel threads.

linux-clone.c - Linus Torvalds

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <linux/unistd.h>

#define STACKSIZE 16384

/* signal mask to be sent at exit */

#define CSIGNAL 0x000000£ff
/* set if VM shared between processes */
#define CLONE_VM 0x00000100

/* set if fs info shared between processes */

15

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#define CLONE_FS 0x00000200
/* set if open files shared between processes */
#define CLONE_FILES 0x00000400
/* set if signal handlers shared */
#define CLONE_SIGHAND 0x00000800

int start_thread(void (*fn) (void *), void *data) {
long retval;
void **newstack;

/*
* allocate new stack for subthread
*/
newstack = (void **) malloc(STACKSIZE) ;
if (!'newstack)
return -1;
/*
* Set up the stack for child function, put the (void *)
* argument on the stack.
*/
newstack = (void **) (STACKSIZE + (char *) newstack);
x—-newstack = data;

/*

Do clone() system call. We need to do the low-level stuff
entirely in assembly as we’re returning with a different

stack in the child process and we couldn’t otherwise guarantee
that the program doesn’t use the old stack incorrectly.

* ¥ ¥ *x

16

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

* X X X X X X X X X X X X ¥ ¥ ¥ ¥ * *

*

Parameters to clone() system call:
%eax - __NR_clone, clone system call number
%ebx - clone_flags, bitmap of cloned data
%ecx - new stack pointer for cloned child

In this example %ebx is CLONE_VM | CLONE_FS | CLONE_FILES |
CLONE_SIGHAND which shares as much as possible between parent
and child. (We or in the signal to be sent on child
termination into clone_flags: SIGCHLD makes the cloned
process work like a "normal" unix child process)

The clone() system call returns (in %eax) the pid of the newly
cloned process to the parent, and 0 to the cloned process. If
an error occurs, the return value will be the negative errno.

In the child process, we will do a "jsr" to the requested
function and then do a "exit()" system call which will
terminate the child.

/

asm__ __volatile__(
"int $0x80\n\t" // Linux/i386 system call
"testl %0,%0\n\t" // check return value
"jne 1f\n\t" // jump if parent
"call *%3\n\t" // start subthread function
"movl %2,%0\n\t"
"int $0x80\n" // exit syscall: ex subthread
||1:\t||

17

70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

:"=a" (retval)

:"0" (__NR_clomne),"i" (__NR_exit),

nyn (fn) ,

"b" (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND |

SIGCHLD)

3

c" (newstack));

if (retval < 0) {

errno = -retval;

retval = -1;

}

return retval;

int show_same_vm;

void cloned_process_starts_here(void * data) {

printf("child:\t got argument %d as fd\n", (int) data);

show_same_vm = 5;
printf("child:\t vm =
close((int) data);

}

int main() {
int fd, pid;

fd = open("/dev/null",

if (fd < 0) {

%d\n", show_same_vm);

0_RDWR) ;

18

98 perror("/dev/null");

99 exit(1);

100 T

101 printf ("mother:\t fd = %d\n", £d);

102

103 show_same_vm = 10;

104 printf ("mother:\t vm = %d\n", show_same_vm);

105 pid = start_thread(cloned_process_starts_here, (void *) fd);
106

107 if (pid < 0) {

108 perror("start_thread");

109 exit(1);

110 ¥

111

112 sleep(1);

113 printf ("mother:\t vm = %d\n", show_same_vm);

114 if (write(fd, "c", 1) < 0)

115 printf ("mother:\t child closed our file descriptor\n");
116

linux-clone.c

The output from Linus’ threading example is as follows:

mother: fd = 3

mother: wvm = 10

child: got argument 3 as fd

child: vm = 5

mother: wvm = 5

mother: child closed our file descriptor

19

4.3 Developing with LinuxThreads

A variety of threading libraries (including user space implementations) have
been developed for Linux. However, the defacto standard library is now Lin-
uxThreads. LinuxThreads 0.8 provides a mostly compliant POSIX 1003.1c
implementation and forms part of glibc 2.x. Linux initially diverges from
the POSIX standard with one fundamental difference - each thread has an
independent PID. This occurs because each thread is essentially a standard
Unix process pretending to be a thread. POSIX requires that all threads in
a process share a single PID. In turn, this violation effects the behavior of
fork(2) and signals, none of which are entirely POSIX compliant.

The following are minimum requirements for developing threaded software
with Linux: gce 2.8, gdb 4.18, LinuxThreads 0.8, glibc 2.0.1 and kernel 2.x

The following table provides examples of common linker and compiler flags
required when compiling POSIX threaded software:

Utility Parameter Platform

1d -lpthread All platforms

gee/ce -D_ REENTRANT All platforms
-pthread Free/OpenBSD
-D_POSIX_C_SOURCE=199506L HP-UX
-mt (SunSoft CC only) Solaris

20

5 Programming with POSIX threads

This Section outlines how POSIX threads functions and data types may be
used to create multi threaded applications. Within Section 5.2 performance
comparisons will be made between a forking and threaded example appli-
cation on Linux, Solaris and FreeBSD. This comparison is by no means a
definitive benchmark, however, it does provide some insight into the perfor-
mance benefits of threaded applications. The following systems were used to
test each piece of code.

Hostname Operating System | Processor(s) Memory
athena Linux 2.2.17 AMD K6-2/300MHz 64MB
fatso FreeBSD 4.2 Intel 100MHz Pentium 32MB
helios Solaris 8 160MHz TuroboSPARC 96MB
prometheus | Solaris 8 2 x 150MHz HyperSPARC | 256MB

5.1 POSIX thread facilities

In addition to providing facilities to create, terminate and synchronise threads
and shared data, POSIX threads implementations should provide features
such as:

- A per-thread errno global variable;
- Thread safe versions of functions such as malloc(8) and free(3).

21

5.2 POSIX thread creation

A POSIX thread is created using the pthread_create() function. This function
is defined as:

int pthread_create(pthread_t *thread_id, pthread_attr_t *attr,
void *(*startroutine) (void *), void *arg)
The pthread_create() function returns 0 upon success, ENOMEM if there are
insufficient resources to create the thread, EINVAL if the attributes are in-
valid or EPERM if there are insufficient priviladges to create the thread.

The thread_id pointer stores the thread’s unique identifier (analogous to a
process PID), attr stores the attributes that the new thread should possess
upon creation and startroutine points to the function that should be called
upon thread creation. Finally, arg is a pointer to data which should be sup-
plied as an argument to startroutine. Note, only one argument is allowed so
multiple data objects may be placed within a struct.

Functions which are called by pthread_create() should be of the form:

void *function(void *argument) ;

The argument may then be re-cast at a later date to the desired type. When
a thread wishes to exit, it may do so in a variety of ways - either via a return
statement or by calling the following function:

void pthread_exit(void *value_ptr);

22

The value of the exiting thread is lost unless the caller waits for it with
the following function:

void pthread_join(pthread_t thread_id, void *value_ptr);

The pthread_join() function is analogous to waitpid(2) for processes.

Thread attributes are set by the pthread_attr_*() routines and define details
such as what state the thread should begin execution in, scheduling infor-
mation, etc. If NULL is specified as an argument to pthread_create(), the
thread will be created with a default set of attributes. An examination of
all pthread attributes is beyond the scope of this paper, but one noteworthy
attribute must be mentioned. When a thread exits, its resources are not
automatically recycled. The thread will continue to exist in a zombie state
until it is joined with pthread_join().

However, in some situations it may not be convenient to use pthread_join().

The thread’s id may be lost, the caller may not wish to collect the thread’s
return value or suspend its execution while it waits for the thread to finish. In

such a case, the thread may be created with the PTHREAD_CREATE_DETACHED
attribute set. This will create the thread in a detached state. When the
thread exits all resources will be automatically recycled.

23

The attribute may be set with code such as the following or by calling
the pthread_detach(pthread_t *thread_id) function at any time:

pthread_attr_t attr;
pthread_t t;

pthread_attr_init (&attr) ;
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) ;
pthread_create(&t, &attr, some_function(), (void *) some_arg);

or

pthread_detach(&t1)

A thread that is detached can never be joined again with pthread_join().
It is also worth mentioning again, that all pthread data types are opaque.
One should never make any assumptions about the underlying data types.
Further, the result of copying pthread data variables is undefined as is per-
forming arithmetic (e.g equality) operations upon them. In order to check
if two pthread_t thread IDs are the same, the following function should be
used:

int pthread_equal(pthread_t thread0, pthread_t threadl);

The pthread_equal() function returns a non-zero value if the thread IDs are
equal, otherwise zero is returned.

24

© 0 N oA W N =

e e
TR W N = O

A thread’s thread identifier may be retrieved at any time by using the fol-
lowing function:

pthread_t pthread_self (void);

The following code demonstrates thread creation by creating a pre-defined
number of threads and prints a message from each. To contrast, a forking
version is provided.

5.2.1 Threaded version

test2-thread.c

#include <pthread.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#define MAX_THREADS 512

void *say_hello(void) {
printf (" [thread %d] new thread created\n", (int) pthread_self());
sleep(1);
return NULL;

}

int main(void) {
pthread_t t1;

25

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

[A

int x, status;

#ifdef __sun__
pthread_setconcurrency(sysconf (_SC_NPROCESSORS_ONLN)+1);
#endif

for (x = 0; x < MAX_THREADS; x++) {
status = pthread_create(&tl, NULL, say_hello, NULL);
if (status != 0) {
fprintf(stderr, "[thread %d] error creating thread J%s\n",
(int) pthread_self(), (char *) strerror(status));
exit (0);
}
¥
printf (" [thread %d] this is the end\n", (int) pthread_self());
exit (0);

test2-thread.c

5.2.2 Forking version

#include
#include
#include
#include
#include
#define

test2-process.c
<stdio.h>

<unistd.h>
<errno.h>
<sys/types.h>
<sys/wait.h>
MAX_PROCESSES 512

26

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

void say_hello(void) {
printf (" [pid %d]

sleep(1);
}
int main(void) {
int X;
pid_t pid;
for (x = 0; x <
pid = fo
if (pid
}
if (pid
} else {
}
¥
printf (" [pid %d]
return 0;

I am a new child\n", (int) getpid());

MAX_PROCESSES; x++) {
rk();

== (pid_t) -1) {
perror("fork");

exit (0);

== (pid_t) 0) {
// in the child
say_hello(Q);
exit (0);

// in the parent

this is the end\n", (int) getpid());

test2-process.c

27

5.2.3 Performance Comparison Graph

The following graph displays the time taken by the threaded and forking
test code. Note that the Y axis represents time using a logarithmic scale.

oo1

1 |

10 |

01

28,25
184757
11.25
BER BT
1.3 1.1 124
093 e 0ss pyfBas
i — 03z SED] M
oz1 g0ie04G
0.1 o oA
o2 ooz
I |_| I |_| I
Threaded Forking Forking Threaded Forking Threaded
Time Time User User System System

gathena ghelios gpromethews gfatso

28

5.2.4 Performance Comparison Analysis

It is evident from the data provided that threaded applications perform sig-
nificantly better. On Solaris, the threaded application performed its tasks
almost twenty times faster than the forking version. It spent almost half as
much time in user mode and sixteen times less time in kernel mode. Atten-
tion should be paid to the difference in results between the single and multi-
processor Solaris machines. The multi-processor machine spent slightly more
time in kernel mode and slightly less in user mode. This is because some of
the threads could run on different processors thus slightly more kernel inter-
vention was required for context switching and thread creation.

On Linux, the gap was much smaller, but threads still provide a perfor-
mance advantage finishing their tasks three times faster whilst spending five
times less time in user mode and about the same time in kernel mode.

FreeBSD’s user space threads implementation also provided excellent results.
The threaded application performed almost ten times faster and spent sig-
nificantly less time in both user and kernel mode.

The code used in this simple experiment does not mimic the behavior of
a typical application (which would be both computational and I/O bound).
In such a situation a threading model which includes a kernel and user space
scheduler (such as Solaris or Tru64) would most likely perform best.

29

5.3 Mutual Exclusion

As threads share the same address space, they must possess a synchronisa-
tion method to ensure that shared resources are not corrupted by concurrent
reading and writing. POSIX threads provide a synchronisation type called a
mutex. A mutex (short for mutual exclusion) may be used to protect access
to any resource. A mutex locked within a single thread may not be unlocked
by any other thread. A thread which attempts to acquire a locked mutex
will block until it is released.

The mutex type within POSIX threads is pthread_mutezr_t and may be ini-
tialized at deceleration with the PTHREAD _MUTEX_INITIALIZER value
or with the following function:

int pthread _mutex_init(pthread_mutex_t *mutex,
pthread_mutexattr_t *attr);

The mutex initialization returns 0 if successful, EBUSY if it has already been
initialised or EINVAL if the mutex or attributes are invalid.

A mutex may have a variety of attributes accrued to it at initialisation.
Discussion of these attributes is beyond the scope of this paper.

Mutexes should be used to protect multiple threads from reading or writing

shared data at once. In addition, a mutex should be used to protect a non-
thread safe function from multiple invocations across threads.

30

© 00 N O oA W N -

LT o S S S S - S S
© 0 N O oA W N = O

The following code provides an example of how a mutex is used to protect
stdout. When a program is linked with the pthread library, the library will
transparently perform internal mutex locking for functions such as malloc(3)
and buffering/locking of stdout. In the following code explicit mutex lock-
ing of stdout is required as characters are being written to stdout individually.

file-mutex.c

#include <pthread.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

pthread_mutex_t stdout_mutex = PTHREAD_MUTEX_INITIALIZER;
const char array[] = "http://www.linux.conf.au/\n";

void *display(void) {
int x, y;
struct timespec tv = { 0, 100 };
for (y=0;y<5;y++) {
pthread_mutex_lock(&stdout_mutex) ;

printf (" [thread %d] ", (int) pthread_self());
for (x=0;x<strlen(array) ;x++)
putchar (array[x]) ;

pthread_mutex_unlock(&stdout_mutex) ;

31

20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

nanosleep (&tv, NULL);

}
return NULL;
}
int main(void) {
pthread_t tl, t2;
int status;

#ifdef __sun__
pthread_setconcurrency(sysconf (_SC_NPROCESSORS_ONLN)+1);
#endif
status = pthread_create(&tl, NULL, (void *) display, NULL);
if (status !'= 0) {
fprintf(stderr, "[thread %d] error creating thread:
pthread_self(), (char *) strerror(status));
exit (0);
}
status = pthread_create(&t2, NULL, (void *) display, NULL);
if (status != 0) {
fprintf(stderr, "[thread %d] error creating thread:
pthread_self(), (char *) strerror(status));
exit (0);
}
pthread_join(t2, NULL);
return 0;

file-mutex.c

%s\n",

%s\n",

32

The following was output from the aforementioned program:

[thread 4] http://www.linux.conf.au/
[thread 5] http://www.linux.conf.au/
[thread 4] http://www.linux.conf.au/
[thread 5] http://www.linux.conf.au/
[thread 4] http://www.linux.conf.au/
[thread 4] http://www.linux.conf .au/
[thread 5] http://www.linux.conf .au/
[thread 4] http://www.linux.conf .au/
[thread 5] http://www.linux.conf.au/
[thread 5] http://www.linux.conf.au/

The following was output from the aforementioned program with mutex lock-
ing removed at lines 16 and 20. Observe that how without correct synchro-
nisation the data is corrupted.

[thread 5] [thread 4] http:ht//wwtp://www.w.linux.conflinu.au/x.c
onf .au/

[thread 5] http://www.linux.conf.au/

[thread 4] http://www[thread 5] http://www.linux.conf..linuxau/
.conf.au/

[thread 5] http://wlthread 4] hww.littnux.conf.au/
p://www.linux.conf.au/

[thread 4] http://www.linux.conf.au/

[thread 5] http://www.linux.conf.au/

[thread 4] http://www.linux.conf.au/

33

5.4 Signaling and Synchronisation

Within an application, there may be times where the need arises to signal
another process or thread to begin doing some work. There may be a queue
of data that needs to be processed or a thread pool waiting to service a newly
established connection. POSIX threads offers condition variables to perform
this function. A thread or many threads may wait on a particular condition
and once the condition is met, one or all of the threads will return from their
blocked state and begin their work.

Within POSIX threads, a condition variable is always associated with a mu-
tex and indirectly, associated with the data it is waiting upon. A condition
variable is defined by the pthread_cond_t type. Like a mutex, a pthread_cond_t
can be initialized either with the constant PTHREAD_COND_NITIALIZER
or the following function:

pthread_cond_init (pthread_cond_t *cond, pthread_condattr_t *attr);

The function pthread_cond_init() returns 0 if successful, EAGAIN if insuffi-
cient resources are available or ENOMEM if insufficient memory is available.

Like most of the POSIX thread functions, condition variables have attributes

which may be set upon initialisation. Discussion of these attributes are be-
yond the scope of this paper.

34

Once initialised, a condition variable may be waited upon by using either
of the following functions:

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) ;

int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t *mutex,
struct timespec *wait_time) ;

The above functions will return 0 upon success, EINVAL if either the mutex
or condition variable are invalid or ETIMEOUT if pthread_cond_timedwait()
returns from the timed wait without the condition variable changing state.

Before calling either of the above functions, a thread must have the asso-
ciated data mutex locked. The function will internally unlock the mutex to
allow other operations to occur, but once the condition has been signaled the
function will return with the mutex locked.

In order to wake a thread or threads waiting upon a condition variable,
one of the following functions may be used:

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

The pthread_cond_signal() function will only wake a single thread whilst
pthread_cond_broadcast() will wake all waiting threads. The above functions

35

© 0 N O oA W N -

T S S B S
S © ® 9 ® G A W N B O

21
22
23
24

return 0 upon success or EINVAL if the condition variable has not been ini-
tialised. The following code demonstrates how a condition variable may be

used:

#include <pthread.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>

typedef struct {
pthread_mutex_t mutex;
pthread_cond_t cond;
char *data;

} data_t;

data_t data;

pthread_mutex_t stdout_mutex

void *wait_thread(void) {

cond-wait.c

= PTHREAD_MUTEX_INITTALIZER;

pthread_mutex_lock(&data.mutex) ;

while (1) {

/* mutex is always returned locked, hence no need to

lock or unlock within the loop */

36

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

43
44
45
46
47
48
49
50
51
52

pthread_cond_wait(&data.cond, &data.mutex);
pthread_mutex_lock(&stdout_mutex) ;

if (strcmp(data.data, "q\n") == 0) {
printf (" [thread %d] goodbye!\n",
(int) pthread_self());

printf (" [thread %d] user said: ’s",
(int) pthread_self(), data.data);

pthread_mutex_unlock(&stdout_mutex) ;
free(data.data) ;

void *input_thread(void) {
char buf[80];
struct timespec tv
while (strcmp(buf, "gq\n") != 0) {
pthread_mutex_lock(&stdout_mutex) ;
printf (" [thread %d] enter string: ", (int) pthread_self());
fgets(buf, 79, stdin);
pthread_mutex_unlock(&stdout_mutex) ;
pthread_mutex_lock(&data.mutex) ;

{0, 100 };

if (data.data

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

} el

}

pthread_mutex_unlock(&data.mutex) ;

data.data
se {

strdup (buf) ;

free(data.data);

data.data

strdup (buf) ;

pthread_cond_signal (&data.cond) ;

nanosleep (&tv, NULL);

}
return NULL;
}

int main(void) {

pthread_t
int

// initializ

tl, t2;
status;

e the data

pthread _mutex_init(&data.mutex, NULL);
pthread_cond_init (&data.cond, NULL);

data.data =

#ifdef __sun_
pthread_setconcurrency(sysconf (_SC_NPROCESSORS_ONLN)+1);

#tendif

NULL;

38

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

status = pthread_create(&tl, NULL, (void *) wait_thread, NULL);
if (status !'= 0) {

}

fprintf(stderr, "[thread %d] error creating thread: %s\n",
pthread_self(), (char *) strerror(status));
exit (0);

status = pthread_create(&t2, NULL, (void *) input_thread, NULL);
if (status !'= 0) {

fprintf(stderr, "[thread %d] error creating thread: J%s\n",
pthread_self(), (char *) strerror(status));

exit (0);

}

pthread_join(t2, NULL);
return O;

cond-wait.c

The following was output from the aforementioned program:

[thread 5]
[thread 4]
[thread 5]
[thread 4]
[thread 5]
[thread 4]

enter string: hello
user said: hello
enter string: world
user said: world
enter string: q
goodbye!

39

5.5 UNIX Signal handling

Signal handling can become complex within a multi-threaded application and
should, where possible, be avoided. The POSIX thread standard states that
application generated signals are sent to any thread within that application.
This means that if a SIGCHLD is raised by a child process, it may not be
delivered to the thread that originally created that child. However, the sig-
nals SIGFPE, SIGSEGV, SIGPIPE and SIGTRAP are always delivered to
the thread that caused them [2].

Despite signals being sent to individual threads, they do effect the process
as a whole. Unless the relevant signal handler is installed, a signal such as
SIGSEGV (whether sent to an individual thread or the process) results in
the entire process being killed and a core file generated.

As mentioned previously, LinuxThreads signal handling differs significantly
from the POSIX standard. According to the POSIX standard, external sig-
nals generated from a command such as kill should be sent to the process
which in turn delivers it to any thread that does not block the signal. Since a
thread within Linux is in fact a process, the external signal will be delivered
to that particular process. If another thread is blocked in sigwait(2) waiting
for that external signal, it will remain blocked. Additionally, SIGUSR1 and
SIGUSR2 may not be used within a threaded application under Linux as
they are used internally by LinuxThreads.

40

On POSIX compliant systems the preferred signal handling method is to
create a thread specifically for signal handling. The required signals should
be masked in all other threads by using the following function:

int pthread_sigmask(int how, sigset_t *set, sigset_t *oset);

The pthread_sigmask() function returns 0 upon success and a non-zero value
upon error. A thread inherits the signal masks of its creator. It is therefore
possible to set signal masks of all threads by specifying them in main() be-
fore creating any threads.

Once all threads other than the signal handling thread have the signal masked,
the handler thread may wait for the signal with sigwait() and perform the
appropriate processing when necessary.

However, in order to process external signals in a portable fashion on Linux,
a signal handler should be installed process wide with either signal(2) or
sigaction(2). The code executed within a signal handler is not async-safe so
it is generally necessary to wake a thread (using Sys V IPC) to perform the
required operations once a signal has been received.

The following code outlines how a portable external signal handler may be
implemented:

41

© 0 N oA W N =

[I T e e e e e
= OO © 00 N O ook W N = O

22
23
24
25
26
27
28

signals.c

#include <pthread.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <semaphore.h>

sem_t thread_sem;

void *signal_thread(void) {
while (1) {
// wait for the semaphore to be posted
sem_wait (&thread_sem);
printf (" [thread %d] SIGHUP received\n",
(int) pthread_self());

}
void handler(int sig) {
if (sig == SIGHUP) {
signal (SIGHUP, handler);
sem_post (&thread_sem) ;

}

int main(void) {

42

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

pthread_t t;
int status;

#ifdef __sun

pthread_setconcurrency(sysconf (_SC_NPROCESSORS_ONLN)+1);

#endif

if (sem_init(&thread_sem, 0, 0) ==

printf (" [thread %d] error initialising semaphore:

-1) {

(int) pthread_self());
perror("sem_init");

exit(1);
}

signal (SIGHUP, handler);

status = pthread_create(&t, NULL, (void *) signal_thread, NULL);

if (status '= 0) {

printf (" [thread %d] error creating signal_thread: J%s\n",
(int) pthread_self(), strerror(status));

exit(1);
}

pthread_join(t, NULL);
return 0;

3

signals.c

43

N O oA W N

5.6 One time operations

Sometimes within a threaded program, it is useful to execute an operation
only once within a thread, no matter how many times it is invoked. This may
include operations such as initialising a mutex with the pthread_mutex_init()
function. This may be performed by declaring a variable of type pthread_once_t
which must be initialized with the value PTHREAD_ONCE_INIT. It is then
possible to perform an operation a guaranteed single time by using the fol-
lowing function:

int pthread_once(pthread_once_t *once, void (*once_routine, void)););

once_routine is the pointer of the function to be called. Note, no argument
can be given to the function unlike with pthread_create_thread(). The func-
tion pthread_once() returns 0 if successful or EINVAL if either the supplied
routine or pthread_once_t are invalid.

The following code illustrates how pthread_once() may be used:

do-once.c

#include <pthread.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <unistd.h>

#define MAX_THREADS 512

pthread_once_t once = { PTHREAD_ONCE_INIT };

44

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

void say_hello(void) {
printf (" [thread %d] Listen carefully, I will say this only once\n",
(int) pthread_self());
}

void *thr_ctl(void) {
pthread_once(&once, say_hello);
return NULL;

}
int main(void) {
pthread_t t1;
int X, status;

#ifdef __sun__
pthread_setconcurrency(sysconf (_SC_NPROCESSORS_ONLN)+1);
#endif
for (x = 0; x < MAX_THREADS; x++) {
status = pthread_create(&tl, NULL, thr_ctl, NULL);
if (status !'= 0) {
fprintf(stderr, "[thread %d] error creating thread %s\n",
(int) pthread_self(), (char *) strerror(status));
exit (0);
}
}
printf (" [thread %d] This is the end\n", (int) pthread_self());
exit (0);

do-once.c

45

5.7 Thread Cancellation

In many situations, a programmer may wish to stop a thread’s operation
and ensure that it shuts down cleanly. An example would be ensuring a dbm
database is closed correctly with dbm_close(3) before an application is shut
down or unlocking shared mutexes when the thread is shutdown or restarted.
It would be possible, but messy to implement such a signaling method using
UNIX signals or condition variables. Fortunately, POSIX threads provides
a set of cancellation functions which many be used to shutdown a thread
cleanly.

In order for a thread to be canceled, it must first declare that it is able
to be canceled by calling the following functions:

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

POSIX threads provides two types of cancellation - deferred and asynchronous.
A thread using deferred cancellation will only allow cancellation at specific
cancellation points. Cancellation points include various system and function
calls including read(2), pthread_cond_wait(), etc. Consult the relevant ven-
dor’s operating system documentation for all supported cancellation points.
Additionally, POSIX threads defines the following function:

void pthread_testcancel();

46

This function may be used to test whether cancellation is required at any
point within an application. It is particularly useful for allowing cancellation
from a hard loop without any system cancellation points.

Asynchronous cancellation allows the thread to be canceled at any time with-
out encountering a cancellation point. Use of asynchronous cancellation is
not encouraged as it may potentially leave resources in an unknown state.

Once cancellation has been enabled within a thread, the following functions
may be used to define and place a “clean up function” on the cancellation
stack:

void pthread_cleanup_push(void (*handler, void *), void *arg);
void pthread_cleanup_pop(int execute);

Note, in order for the application to compile, use of pthread_cleanup_push()
requires that a matching pthread_cleanup_pop() is placed within the same
caller function.

If multiple cleanup handlers are placed upon the cleanup stack, they will
be called in LIFO order once a cancellation request is received. In order to
send a cancellation request, the following function is defined:

int pthread_cancel(pthread_t thread);

47

© 0 N O oA W N -

T S S B S
S © ® 9 ® G A W N B O

21
22
23
24

The pthread_cancel() function returns 0 upon success or ESRCH if no such
thread exists. The following code provides an example of deferred cancella-
tion:

cancel.c

#include <pthread.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>

double *xcurrent_£fn;
pthread_t tl, t2;

void calc_fn_cleanup(void) {
printf (" [thread %d] cancelled; cleaning up now\n",
(int) pthread_self());
if (current_fn != NULL) {
free(current_£fn) ;
}
return;

}

void *calc_fn(void *arg) {
const double k = 1/sqrt(5.0), p = ((1.0+sqrt(5.0))/2.0);
double x;
int i = 1;

48

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52

int *total = arg;

pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, NULL);
pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED, NULL);
pthread_cleanup_push((void *) calc_fn_cleanup, NULL);

current_fn = (double *) malloc(sizeof (double));

while (1) {
x = k * pow(p, ++1i);
*current_fn = x;
pthread_testcancel();
*total = *total + 1;
}

pthread_cleanup_pop(1);
return NULL;
}

void *cancel_q(void) {
char buf[80];

while(strcasecmp(buf, "y\n") != 0) {
printf (" [thread %d] shall I cancel [y/n]l: ",
(int) pthread_self());
fgets(buf, 79, stdin);

49

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

pthread_cancel(t1);
return NULL;

}

int main(void) {
int status;
void *ret;
int total = 0;

#ifdef __sun__
pthread_setconcurrency(sysconf (_SC_NPROCESSORS_ONLN)+1);
#endif

status = pthread_create(&tl, NULL, (void *) calc_fn, (void *) &total);

if (status != 0) {
fprintf(stderr, "[thread %d] error creating thread: %s\n",
pthread_self(), (char *) strerror(status));
exit (0);
¥

status = pthread_create(&t2, NULL, (void *) cancel_q, NULL);
if (status != 0) {
fprintf(stderr, "[thread %d] error creating thread: J%s\n",

pthread_self(), (char *) strerror(status));
exit (0);

a0

81
82
83
84
85
86
87
88
89
90

pthread_join(tl, &ret);

if (ret == PTHREAD_CANCELED) {

printf (" [thread %d] thread %d cancelled; %d ops performed\n",

pthread_self(), t1, total);
¥

return 0;

cancel.c

5.8 Forking and Threads

The use of fork(2) within a threaded application should be avoided unless it
is used only to invoke another program with ezec(2). The POSIX standard
states that only the thread which calls fork(2) will exist in the child. Ad-
ditionally, it will own all the mutexes and have the same values for thread
specific data as it did before the fork(2). Additionally, to assist in perform-
ing cleanup operations before a fork, POSIX threads provide the following
function (which is analogous to atexit(2)):

int pthread_atfork(void (xprepare)(void), void (*parent) (void),
void (*child) (void));

The function returns 0 if successful or ENOMEM if insufficient memory is
available. The pthread_atfork() function allows a specified function to be

o1

called within a thread prior to fork(2) being called. This allows a thread
to unlock any required mutexes and protect itself from a deadlock situation
in the child. All threaded software which executes non-trivial code within a
child process should use pthread_atfork().

Linux diverges from the POSIX standard in regards to the behavior of fork(2)
within a threaded program. A portable method to use fork(2) safely on Linux
and other operating systems is to create a “fork thread” which listens for re-
quests and calls fork(2) and wait(2) on behalf of other threads.

5.9 Using Non-thread Safe Functions

Whilst thread safe versions of many standard POSIX functions (such as
strtok_r() have been added with the advent of threads, many non-thread safe
functions still exist either in third party libraries or within libc. Functions
such as bufsplit() can still be used within a threaded program but must be
protected by a mutex. The following code provides an example of how such
a function may be used:

pthread_mutex_t bufsplit_mutex = PTHREAD_MUTEX_INITIALIZER;
char **st[3];
char *buf;

92

buf = strdup("root:x:0:0::/:/sbin/sh");

pthread_mutex_lock(&bufsplit_mutex) ;
bufsplit(":", 0, NULL);

bufsplit(buf, (size_t) 2, st);
pthread_mutex_unlock(&bufsplit_mutex) ;

Third-party libraries should have their function interfaces modified ac-
cordingly to follow the standard of functions such as strtok_r() where any
persistent data is passed as an argument to the function. However, in many
cases it may not be possible to alter the interface a function presents to the
outside world. In such a situation POSIX thread specific data may be of as-
sistance. Essentially, thread specific data allows the same data structure to
be used by multiple threads but each thread has it’s own instance of the data
and its own associated value. However, due to it’s complex nature, detailed
discussion of thread specific data is beyond the scope of this paper.

5.10 Advanced Threading Topics Not Covered

Much of the advanced multi-threading functionality provided within the
POSIX standard has not been discussed within this paper. Specifically,
thread, mutex and condition variable attributes provide the ability to control
how such data types behave and what functionality they provide (e.g mu-
texes shared across multiple processes, etc). The standard also provides real

23

time extensions that provide functionality to alter scheduling characteristics
of an application and its threads. Further information can be sought from
threading texts, vendor documentation or the standard itself.

Additionally, The X/Open Group have provided extensions to the POSIX
thread standard as part of their UNIX98 specification. The most notewor-
thy extension is the inclusion of read /write locks with the pthread_rwlock_*()
set of functions. These provide mutex like functionality whilst allowing a
distinction between reader and writer threads thus allowing many threads to
concurrently access a resource whilst allowing only a single thread to perform
updates.

o4

6 Acknowledgments

The author would like to thank the following people for reviewing and pro-
viding amendments to this paper:

David Luyer
Pacific Internet, Australia

John Ferlito
Bulletproof Networks, Australia

Nic Grant
Tripfinder Limited, Ireland

Philip Dell
Hewlett-Packard Consulting, Australia

95

References

1]

2]

3]

[4]

[5]

Chris DiBona, Sam Ockman and Mark Stone (editors)
Open Sources - Voices from the Open Source Revolution
O’Reilly and Associates, 1999

David R. Butenhof
Programming with POSIX Threads
Addison-Wesley, 1999

E. W. Dijkstra, F. Genuys (editor)
Cooperating sequential processes, Programming languages
Academic Press, 1968

Brian O’Sullivan
comp.os.research FAQ
http://www.serpentine.com/ bos/os-faq/, 1996

Uresh Vahalia
UNIX Internals - The New Frontiers
Prentice Hall, 1996

o6

