T i

e v o | u

m

t

h

i o n 5

Augmented Reality With Wearable Computers Running Linux

Wayne Piekarski, Bruce Thomas
Schod of Computer and Information Science
University of South Australia, Mawson Lakes, SA, Australia

Abstract

This paper describes the wncept of augmented
redity, the processof drawing virtual images over the
red world using a head mounted display. Using
weaable ommputers, it is possble to take augmented
redity software outdoors and visualise data that only
existsin acomputer. The paper discusses al concepts
in detail, and the hardware used to buld the system,
explaining the various components and cogs.
Examples of AR applicaions developed by the
authors are explored, showing some ideas as to what
the techndogy could be used for.

The Tinmith system is a @mplete software
architecture designed to develop AR and other
software that deals with trackers, input devices, and
graphics. The design o the code is explained,
including how it was developed. Tinmith is based on
a ompletely free software system comprising the
Linux kernel, GNU tods and libraries, the GNU
C/IC++ compiler, XFreeB6 graphics wrver, GG
graphics interface, OpenGL 3D renderer, PostgreSQL
database, and Freetype font renderer.

1 Introduction

In recent times, numerous advances have been made
in many areas of electronics and computing, allowing
us to explore many previously unknown areas and
open up new opportunities for research.

Techndogy such as powerful portable cmputers,
head-mounted dsplays (HMD), global positioning
systems (GPS), and software have made it possible to
develop an augmented redlity (AR) system which can
be operated in a non-computer friendly, oudoor
environment.

Imagine a user weaing a head-mounted dsplay,
dlowing them to watch TV or their computer on a
virtual screen projected into their eyes, similar to
virtual redity (VR) techndogy you may have seen
before. However, using an optical combiner inside
the HMD, it is possble to see both the red world,
and overlaid computer imagery at the same time. This

BikE

ability to view physicd and virtual worlds at the
same time is cdled augmented redlity, and is the
focus of this paper. AR is an exciting new field and
the authors fed that it has enormous potential for
both commercial and recreational use.

Since this is a field with new techndogy that many
people have not been previously exposed to, this
paper will provide an introduction explaining the
technology and components in some detail. Some of
the AR applicaions developed by the authors are
then discussed, showing how the techndogy can be
used in the real world. Mogt of dl, since this is a
conference about Linux and software, the rest of the
paper then dscusses how the system works from a
software paint of view. We discuss the free tods we
used (such as Linux, GNU, and X) to buld the
system, and the overall architecture of the software.

The software developed for this g/stem is cdled
Tinmith, which was darted in 1998 as an
undergraduate engineeing project, and is now being
used further as part of the author’s PhD thesis. The
system is always under continuaus development as it
is atest bed for many new reseach ideas. The main
goal was to provide a complete architecture to
develop AR and aher applicaions that deal with
trackers, input devices, and graphics, something that
is currently not very well developed.

Mogt of all, the paper has been written to give
information about constructing your own hardware.
Hadking isn't just about software, its about using a
soldering iron to modify your hardware, and making
mistakes. The components and their costs are
discussed, however, it is not a cheap field to bein as
some of the hardware tends to be expensive and hard
to find. So read onto find aut more.

2 Hardware

The most important aspect of this work is the
hardware, as it is what enables us to do our work.
Some of the hardware is what would be termed
‘exotic’, in that most people do rot know they even
exist, let aone own them and dream of attaching

them to a PC. Without these @mponents, this
reseach would na even be possible, so it is
important to explain what each of them do.
[AZUM97q]

The first thing to redise is that hardware enables
software to dothings, you can have the best software
in the world but if you dorit have acomputer to run
it on then it is useless So in order to do AR while
waking around aittdoors, we neal certain parts
before the software can be executed.

So, to perform our research, we have built up a
weaable omputer [MANN96, BAS®7] based
around a standard PC laptop, mounted on a badkpack.
When waking around atdoors, traditiond
comporents such as big displays and keyboards are
al useless and so these have been replacal with
more exotic components such as a GPS recever, 3
axis magnetic compass, head mounted dsplays, and
custom built input devices.

2.1 Integration

Everything neeads to be carried around ly the user,
making them completely independent and able to
move autonomously. In order to connect everything
together and make it portable for outdoor use, each of
the components are firmly attached to a hiking frame,
with the cablestied upand secured. The figure below
shows ead of the devices mentioned in this ction,
plus the batteries, straps, and cables used to hdd
everything together.

Figure 1 — Tinmith Backpack Outaoo}s
The first thing that most people observe when seeing
the badkpad is that it is heavy and buky, and we
agree with them. But it does work however, and the
main oljective of the projed is to perform research
into augmented redity — the weaable computer
aspect is not so important. As aresult, flexibili ty with
hardware and eae of use are the most important
driving fadors. Given sufficient manufacturing and
financial resources it would be straightforward to
produce asmaller footprint device ntaining all the
comporents fully integrated, but this is not the aea
of interest. Some @mpanies are starting to produce

hardware for this applicationand so it isonly redlly a
matter of time.

2.2 Portable Computer

The mre of the system that brings everything
together is the laptop computer, which is used to
process the information from the sensors, and then
provide feedback to the user looking through the
HMD. For our system, we initialy used a Toshiba
320CDS (P-200), dthough nowv we use a Gateway
Solo (PI1-450) which is considerably more powerful.
Laptops are very useful for a weaable because they
are dready portable, highly integrated, are power
efficient, and you don’t have to solder anything. It is
also passible to buy small, embedded OEM biscuit
PC boards, which usually have more 1/0O capabili ties,
but require you to buld the case axd connectors
yourself.

Any kind d laptop can be used for a weaable,
depending on your persona taste, needs, and
financial resources. Some important factors are CPU,
memory, video, I/O, and Linux compatihility - and
most Pentium-based laptops work quite nicdy. The
most criticd ability is to have alaptop with serial,
USB, and PCMCIA connedors to alow the
conrection d various kinds of devices.

2.3 Head Mounted Displays

The most obvious part of the system is the heal
mourted dsplay. We use two kinds of Sony
Glasdgron devices: the PLM-S700E, which runs at
800x@0, and the PLM-100 dsplay, which runs at
NTSC resolution with a VGA converter.

A HMD is arelatively simple device (although the
most expensive) containing an LCD display similar
to that used inside asmall TV, and uses mirrors and
lenses to stee the light into the user’'s eyes. When
weaing a HMD, the weaer is given the impression
of looking at a large screen floating several metres

away.

Figure 2 — Sony Glasstron HMDs

A traditional HMD for virtual redity is opaque, in
that the user weas it as part of a helmet, and the rest
of the world is completely blacked ou so you are
immersed into the VR environment. When the power
goes, ou everything is dark and you must take the
display off to seeanything. The key diff erence with
the HMDs we ae using is that they are partialy
transparent.

Virtual Image

World

i
TN

Combiner
Figure 3 — Transparent HMD Internal Construction

Ingead o using standard optics like in opaque
HMDs, these use a half-silvered, goticd combiner
mirror. The image from the LCD display is dill
shown to the user as before, except now the mirror
aso alows light from the real world. The end result
is a ghosted image where you can see the physicd
world bu aso computer generated imagery, as
shown in the figure below.

A;t;:i\g’”\m.'n\m ,n._

"f By o

O

” ot

P wers wesli

4 Wl i e
M“ ™

™

'\nd YM
SIrN N l“ll 160 WM WG

Figure 4 — Simultaneous Virtual and Real Worlds

There are many kinds of HMDs on the market,
athough most of them tend to be epensive
(thousands of dollars) as there is not a large market
for these yet. Also, HMDs vary in image quality and
field of view depending on the price Some displays
have very dull looking images, do nd work well in
sunlight, and have very low resolution. The term field
of view (FOV) is defined as how much of the user’s
vision the display can draw over, the larger the view
then the more complex the internal optics are.

Recetly, a new generation of laser displays has
emerged, which paint an image onto the retinain the
badk of the eye directly. These displays have amuch
higher quality image, and will soon ke smal and
cheg enough to be atualy used. These are till
being developed but are something to look out for.

2.4 Position Tracking

In order to allow the mmputer to draw images that
match the real world, it needsto know where you are.
When trying to overlay three dimensional models
over the red world, having an acarate position is
very important, otherwise the images will not overlay
correctly and the user will have troude understanding
the image.

Since we ae operating outdoors, we use US Global
Positioning System (GPS) satellites, along with a
Garmin 12XL recever unit. The GPS receiver
cdculates its position ance per second by working
out its distance from a @nstellation o GPS satelli tes
in space. Due to atmospheric noise and intentional
signal degradation by the US Department of Defence,
(selective availahility) the acuracy of GPS can vary

to around 30 metres, which is not acceptable. By
using a differential GPS recaver, it is passible to
receive rrection signals from base stations that
alow us to get paosition uplates that are & around 5
metres accuracy, athouwgh this can vary.

Position trackers rely on some kind d infrastructure
being in placebefore they can be used. Systems exist
that use magnetic and utrasonic traders, although
these have Ilimited range ad require fixed
transmitters. Other systems use video cameras to
cepture images to work out locdion, but image
recognition isimmature and requires prior knowledge
of the surroundings. The advantage of GPS receivers
is that their reference points are in orbit, meaning
they are visible dmost al the time, and work
anywhere in the world. The only catch with GPS is
that it does not work indoas.

Figure 5 — Garmin 12XL GPS

Most GPS manufadurers support the NMEA-0183
standard, which alows us to transmit the GPS
position information over an RS-232 serial cableto a
PC for procesing. This format is very easy to
process and contains the aurrent world locaion in
latitude/longitude/height (LLH) values.

Sincethe GPSreceiver is only being used as away of
cdculating position, having a unit with an inbult
display or map is awaste of money and rot useful, as
it is mourted onto the backpadk. When purchasing a
GPS unit, a good quality recever is the criticial part,
as me units cut corners here. A 5 metre (using
differential) GPS unit can be bought for about $50Q
while more acurate units (from 1 to 50 cm) range
from $8,500to $50000.

2.5 Orientation Tracking

Just knowing where the user is located in the red
world is dill not enough for the computer to know
everything abou where you are and what you are
looking at. The healing, pitch, and roll of the user's
head is also important, as people very rarely look
exactly north. As a result, we use aother sensor, a
TCM2-80 from Predsion Navigation.

This unit uses a 3-axis magnetometer to cdculate
heading relative to north, and pitch and roll. A fluid
filled sensor is used to provide etra cdlibration
information to the onboard microcontroller for
processng, and the data is then sent to a PC via an
easy to process serial protocol, at arate of 16 Hz.

Figure 6 — TCM2 Magnetic Orientation Sensor

The device is mounted onto the HMD, (which is
worn by the user) so that it can sense the movements
of the user. As they rotate their head, the display
updatesitself to match.

There are not many devices of this calibre on the
market (due to a small demand) and vary in price
depending on accuracy and range. The price for the
TCM2 range of tradckers is around the $1000 mark,
which is cheg in comparison to other units. The
problem with the TCM2 compass is that it tends to
jitter and suffers from magnetic distortion. Large
metal objects such as cars and street signs tend to
cause the compass to autput incorrect information.
Other techniques like wusing gyroscopes and
accéerometers are immune to interference, bu tend
to have problems with drift and aignment. One
solution is to use hybrid techniques, [AZUM99] that
combine magnetic sensors and gyroscopes together to
take alvantage of their individual strengths. The
Intersense-300 (for $8,500) uses this technique to
produce output that is much more stable and accurate,
and is something we would like to aayuire in the
future.

2.6 Miscellaneous Hardware

To provide networking, a Lucent WaveLAN cad is
used. These operate at 11 Mbit/s and have reasonable
range around the building. They tend to suffer from
interference from large machinery and thick
buildings however, so we ae eperimenting with
antennae placement in the building.

One problem with current PCs is the ladk of serial
ports — each of the tracker devices ®nds its data via
RS-232 cables, and most laptops only come with ore
port. As aresult, we have had to use PCMCIA based
adaptor cards to provide extra ports. These come & a
cost however, a four port Quatech card costs about
$800, and the mnnector contains a lot of very fine
pinsthat can break easily when being used oudoors.

We ae patiently waiting for USB tednology to
mature, then we can use RS-232to USB cornverters
and ahubto conrect up as many serial devices as we
like — this solution is a lot more expandable and cost
effective than using PCMCIA cards. Currently, the
converters are not properly supported under Linux,
and also are not integrated enough to allow us to have
ten of them withou requiring lots of USB hubs and
power supdiesto match.

2.7 Input Devices

A portable backpadk computer is useless if the user
cannot interact with it. The HMD allows the user to
receive information from the computer, but not to
inpu information. Traditional desktop devices like
keyboards and mice are not practical outdoa's as they
are too buky and require afixed surface Instead,
devices such as snall forearm keyboards, touch pad
mice, and tradk ball s are required as an initial starting
point at least.

. . "k . §
Figure 7 — Phoenix Forearm Keyboard and Usage

One thing that shoud be stressed is that we aein a
different environment from a desktop, with much
more freedom of movement, so why shoud we be
restricted to primitive two-dimensional input devices
from 20 or more yeas ago? Rather than try and fit a
3D immersive ewironment around 2D devices, why
not use devices that are designed for the
environment? As a result, other more exotic input
means like speech reaognition and D input devices
are dso currently being looked into.

At this paint in time, we ae eperimenting with
using USB cameras to capture video, then perform
image reaognition d special marker patterns to all ow
the computer to work out the position and orientation
of the user's hands. Hand tracking is traditionally
performed indoors using expensive magnetic
trackers, bu these are too buky and urworkable
outside. By using hand gesturing, voice recognition,
and hane made data gloves, we hope to develop a
useable user interface for AR. This user interface will
alow users to manipulate and create new objectsin a
3D outdoor AR environment, as $rown in the mock
up figure below.

\
Figure 8 — Simulation Showing Hand Gestures
Manipulating 3D Objects

3 Outdoor Augmented Reality

Given the previously integrated hardware
comporents, plus a suitable software system, it is
posshle to take the euipment outdoors to use.
[AZUM97b, FEIN97] We have implemented a
number of AR applications using the Tinmith system,
and these will be explained in the foll owing sedions.

3.1 Outdoor Problems

As with most research, it usually takes place indoors
under nicdy controlled condtions. Fadors such as
lighting, metal, power, and portability can be easily
controlled, as everything is datic.

Moving outdoas is a rea chalenge because
everything must be portable, power must be crried,
ead unit uses a different supply voltage, and fragile
conrectors easily bre&. Things that work indoars,
like the latest and greatest processors, hard disks, and
3D cads, cannot be made portable. Many tradking
techniques gop working in large aeas. As a result,
sacrifices must be made in order to work outside.

Probably the biggest challenge with working
outdoors is the cabling and integration — most PC
equipment is very fragile aad not designed to be
moved and put under stress and as a result, things
tend to break a lot. Wiring nedls to be tied to the
badkpadk, but at the same time needs to be able to be
removed once indoors when things are danged. If
the HMD does not work, you cannot use the laptop
screen because it is fixed down to the backpadk. The
tracker devices fail to send serial data due to fragile
PCMCIA conrectors. Sometimes things don't work,
and then a faulty connector will begin to work again
for nored reason.

As a result, working with this equipment can be
frustrating at times, and going outside usualy
involves quite ahit of preparation, including going
down three flights of stairs in the CS building from
our lab. In most cases, things are tested indoas as
much as possible before venturing into the hostile
outdoor environment.

3.2 Wire Frame Augmented Reality

Once the hardware isaes are resolved, the red
reseach is in augmented reslity however. The main
output of the Tinmith software system is 3D rendered
output. This renderer is smilar to that used for games
such as Quake, except the renderer is a lot simpler
and hes been optimised for AR, and runs in a variety
of different modes. The different versions of Tinmith
eadh have renderers of different capabilities, and so
the release number will be mentioned for each ore.

In this example, we ae using the wire-frame based
renderer in Tinmith-1ll. A model of some UniSA
campus buildings was caefully designed in
AutoCAD over a period of about two weeks, (most
designers use this program so there is no choice in
this matter) using information from the GPS to align
it with the red world. The figure below shows
roughly what the model looks like from an aeia

perspective, and the images presented here are based
onthis.

Figure 9 — Wireframe Model of Selected Campus
Buildings

For the renderer, instead of the user controlling the
position of the camera, the GPS and compass are
used instead. So as you walk aroundthe real world,
the computer renders a scene to the display that
attempts to match the real world.

150ct 1999 17.2038
'S_u'l $890 £139°37 1980’ LLH-WGSe4

Figure 10 — AR Wireframe Building Overlay

The figure &ove shows one such example, showing
the eage of the bulding on the right, and the
computer has overlaid the wireframe in green over
the top. In the centre of the display is a green box,
which was used to visualise an extension to a lecture
theatre a UniSA. The wireframe is useful for
overlaying on red objects, but not very useful for
visualising nontexistent objects. As a result, a solid
renderer is used to produce better displays and was
introduced in Tinmith evo4. The rest of the screen
comporents will be explained in alater subsection.

The wireframe model does not line up with the
buil ding due to tracker errors — the GPS and compass
are not perfect and as a result the image tends to drift
and jitter acrossthe screen instead of being perfectly
stable. [AZUM99] This can be partly fixed with more
expensive euipment, but there is no such thing as
perfect tracking, and there ae still problems with the
computer not rendering frames to the display fast
enough. As the user moves their hea, the trader
returns a value of the aurrent position, which is sent
to the computer with a small delay. The computer
then redraws the display, then waits for the retrace in
the HMD to redraw the screen. This all takes time (40

ms and up) and even delays near 1 ms can be noticed
by the user.

3.3 Architectural Visualisation

The new solid renderer in Tinmith evo4 allowed
more powerful visualisation —rather than just looking
at enhancements of existing objects, it allowed us to
seewhat things would lodk like before they are built.
This is useful for people like achitects and town
planners, they can use the computer to seein red-
time what changes to a dty landscape would look
like withou having to use a bulldozer. To dothis, the
AutoCAD wire-frame model was extended to contain
an air bridge cnnecting two of the campus buil dings,
drawn using solid pdygons.

ZQOOI 1

LS
TAS0' LLH-WGSBd
7

sprapEEENANSEE
ligniezeeinEn

230 TisuNionenone "™ PtOSuHdB: G5

Figure 11 — AR Architecture Visualisation Example

The figure @ove shows the scene outdoors through
the HMD. Notice the green wireframe outline does
nat line up to the building once again. Also nde the
limited areathat the display can acually draw on, the
field of view of most HMDs is quite small.

3.4 Outdoor Navigation System

The origina Tinmith-1l system was designed to
be used as a navigation system by DSTO. To
navigate outdoors in unfamiliar terrain, a map and
compass must be used to avoid getting lost. This
tends to rely on wing locd landmarks, plus counting
paces and using a compass. This fails to work during
the night when there is no light, or in featureless
terrain. Also, if an obstacle like aforest or river is
encountered while dead redkoning, you must plow
through it rather than walk aroundit, otherwise you
will 1ose your position. However, using a suitable
navigation system mapped to aHMD, it is possible to
see &actly where you are in the world, what objeds
are aound, dangerous places to avoid, and steering
instructions to get where you are going. The goal was
to improve situational awareness make someone’s
job easier, and give them time to think about more
important problems.

The main interface for this navigation system is a
2D top down gods-eye view of the world, with fixed
information overlaid on top, shown in the figure
below.

Wt
a‘l:#nm o
)
B .
B0t '1‘MV'|'\

S3448 5770 £138°37 1060 ALM WOSIM

Figure 12 — Outdoor Navigation System Example

At the top of the display is the compass heading,
which is represented as notches and a value every 45
degrees. As the user rotates their head, the compass
updates itself and scrolls left or right to indicae the
new healing. The various pieces of text information
placed around the display are used to show position,
GPS acaracy, and steering instructions to the
nominated waypoint.

At the centre of the display is a blue drcle indicating
current position at the centre, with a blue triangle
indicating the direction of where the user wants to go.
Shown in yellow is the outline of the buildings in the
area, which could be used to walk around the
buildings. A red line with crosshair is controlled with
atouch pad mouse to designate new waypaints onthe
map. The entire display is presented as a top down
view, where the diredion the weaer is fadng is up.
Every visual cue is rotated in red time as the user
moves around.

3.5 Integration With DSTO DIS Simulations

As part of our collaboration with DSTO, we modified
the system (to produce Tinmith-l11) so it would be
able to interact with ather systems. At DSTO, they
run a lot of simulation software, such as ModSAF
[ARMY99] and MetaVR [META99] (very expensive
commercial programs). The ModSAF program is
used to generate antities for virtual battles, containing
code to generate redistic intelligence for tanks,
helicopters, and soldiers. These antities generate DIS
padkets which are broadcast onto a network for other
software to uwse. The Distributed Information
Standard (IEEE standard 1278) is an open standard
using UDP, designed to allow simulation software to
share information. The MetaVR program takes in
these DIS erntities and renders them on redlistic 3D
terrain.

DSTO uses these programs for training simulations,
and have tank and heli copter cockpits that people can
sit in (using red helicopter controls and seats, and
three projectors for an immersive fed) and interact
with the virtual entities. As part of a joint research
project, [PIEK99c] it was thought it could be useful if
the DIS systems could share information with
Tinmith. Using a Lucent WaveLAN cad in the
laptop, the DIS padkets were passed from the DSTO
network to the weaable by a Linux based desktop
madine. Thisinterface dlows the DIS simulationsto
see the wearable moving outdoors, and aso alows
the weaable to see dl the DIS entities. The weaable
computer can then participate in the exercise just like

anything else.

The screen shots above show the displays sen by the
users indoors. The top four are MetaVR output, and
the lower one is the ModSAF entity generator. Each
of them are projected onto the walls of the
development room a DSTO, giving a command
centre like fed. As the weaable person walks around
outdoors, people indoors can keep tradk of their
locaion and current surroundngs from the 3D
rendered dsplays. The flying vehicles are generated
by the helicopter simulator, which is being flown by
a human pilot indoors. The weaable user can see &l
the simulated entities on their HMD. The god
achieved was to improve the situational awareness of
al the users of the system.

e s
% .]
a0
Bty
Figure 13

/ MetaVR Screen Shots
H Integration With Tinmith
3.6 AR-Quake

A project just completed this year was performed by
a group of computer science honous students. The
display modue used in Tinmith was turned off, and
instead, the open source version of Quake was used
to draw the displays. The program was modified to
read UDP padkets generated from Tinmith's sensor
processng code, and the renderer was daved to the
GPS and compass positions.

By suppdying the game with models of the UniSA
campus, the user can run around ouside and day a
game of Quake, except it is now a physicd game
rather than just sitting down. If you want to move in
the game, you must move in red life. By having
multiple weaables and wireless networking, it is
posshleto play against other peopleinred life.

Figure 14 — ARquake Game On Campus

The figure @ove shows me example shots of a
person fdaying the game. Some of the Quake
monsters were modified to improve their visibility,
and the ntrols for moving the player are non
existent, bu apart from that, the game plays exactly
the same & normal.

3.7 Summary

The previous subsections have cvered some of the
examples we have developed using the Tinmith
system. These ae designed to show what AR is
cgoable of, but thisis by no means the limit. AR and
VR systems have traditionally ladked anything in the
way of auser interface and so the systems tend to be
very much read only — you can't interact with them,
and this limits what you can do. By making them
more interadive, this dould allow lots of new
applications.

4 Software Support

When the Tinmith system was initialy being
designed, there were a number of requirements that
had to be met for the development environment. This
includes kernels, libraries, and development todls.
Since alarge investment of time was going to be
made into something that could be reused in the
future, making the right dedsion the first time was
important.

4.1 Operating System
Some of the operating system requirements were:

- True pre-emptive multitasking

- 32-bit memory management and protecion
- Interprocess communication

- TCP/IP network suppat

- Fast graphics rendering support

- Interface to dverse types of legacy hardware
- Low resourcerequirements

- Highreliability

DOS is a good system if you want to talk low level
with hardware, as it is only a program launcher and
then gets out of the way, bu there is no suppat for
this any more, and does not support many of the
requirements above.

Win32 tes good support for new hardware being
relessed, with all manufacturers writing drivers, and
has a good working suppat base of APIs to do
everything from multimediato 3D. However, it does
not alow tinkering with internals, no remote
administration, wastes resources, has questionable

reliability and protection, and just generally ladks the
flexibili ty and control required to buld a system like
this.

The Linux and FreeBSD kernels, with GNU todls,
and the X window system, tend to be very stable, and
problems can be dways be fixed. Resources are kept
track of carefully, and wed minimaly, and it is
amost impaossible to crash the systems due to their
design. The support for most hardware (both new and
legacy) is excdlent, with well-written drivers. The
only cachisthat driver suppat tends to lag by a few
months for new hardware, and some rare hardware
takes longer. Also, the APIs for things like USB,
sound multimedia, and 3D are dso lagging behind
Win32, although just recently this is starting to
change. Many of these problems are caused by
hardware manufacturers, (the developers of these
drivers do a fantastic job) but a the end of the day, if
you are building something to be used in the red
world, you have to use what works. Our madines
previously used Sladkware, but now use RedHat 6
distributions. The system has been tested under
FreeBSD as well, and will port to any Unix-like
system that has all the libraries we use.

4.2 Free Software

The technical superiority of the system chosen was
the main factor in seledion - things like licensing,
cost, or favouritism were not part of the process. If
there were todls that could have done the job better,
but with some kind d cost and no source @de, we
would have seleded them instead. Having a kernel
with open source is handy, bu during the life of the
Tinmith system, we have not yet made any changes
toit. Inredity, most people ae not able to write their
own video o network card driver, or fix abug in the
kernel, withou a lot of experience and dedicaion.
Sincewe ae nat making any changes to other’s code,
there are not too many differences between GPL,
BSD, and aher open source li censes.

4.3 Development Tools

The GNU tools form a magor core for the
development environment, using programs such as
Emacs, and the GNU C/C++ compiler and debugger.
These programs have proven to be of excellent
quality, although there are some rare bugs that occur
in the g++ compiler. The PostgreSQL database is
used to store aonfigurationinformation for the system
instead of traditional text files. Other programs such
as CVS and KDE are used to complete the code
development environment, along with the rest of the
standard programs included with most Linux
distributions.

4.4 Graphics Support Libraries

Implementing everything from scratch can be quite
difficult, and so where possible, other libraries were
used to provide functionality. The most important
areawas graphics rendering, and so the main focus is
onthis.

The original prototype Tinmith-1 system onwards
used X protocol drawing cdls, and double-buffering
in pixmaps for smoath refreshes. The displays were
quite primitive with orly 2D objects, and so it was
possble to render frames at a reasonable speed using
this method. However, when rendering thousands of
primitives per frame at very high refresh rates, X
protocol bregks down. The anount of task switching
and IPC between the X server and dsplay modue
causes the system to waste most of its CPU time in
the kernel instead of getting red work dore. The one
major flaw we can see with the X model for high
performance graphics is that it requires IPC to do
anything, although this is changing, with suppat for
new architectures like DGA and GLX.

As a result of this, a more direct approach was
needed. It would have been possble to use the shared
memory extensions to send client rendered frames to
the X server, but this would require writing a
complete graphics library for handing lines,
triangles, and so forth. This could take alot of time to
implement properly, and has been done before many
times already. Unix users have tended to focus on the
X window system as the only way to dographics, but
some times direct to hardware is the only way to go.

Libraries like SVGAIib alow the programmer to
write to the display diredly, bu this library is very
old and has limited support for newer video
hardware. It does not seean to be maintained by
anyone aiy more, and my impresgon is that it is
basicdly dead. OpenGL hardware aceleration was
not supported under Linux at the time (Only Mesa
with slow software rendering, more on this later).
The only available dternative was the Generic
Graphics Interface (GGI) project. [GGIPO0] The
purpose of this library is to provide an abstraction
layer for al graphics and input device hardware, and
it works on the mnsole, in X windows using both
Xlib and shared memory, the new frame buffer
drivers in the kernel, plus other spedal XFree86
extensions like DGA. We used the X shared memory
target, as it was faster than the DGA (direct graphics
aperture) interfaae, and it did not lock up the console.
The GGlI's ahility to abstract away inpu devices ona
variety of targets was a big plus, as handling this can
be quite tricky in some cases.

So Tinmith-evo4 was cregted to use the GG
libraries, and with the speed restrictions removed, it
was posshble to add support for a full 3D paygon-
based renderer. The performance increase was
phenomenal, the number of system calls dropped to
the point where strace() only showed IPC cdls at the
end of each frame being rendered. The GGl project is
definitely a work in progress the SVGAIib target
does nat support double buffering, and many of the
other drivers are not yet complete. There were afew
bugs present in the code for 16-bit mode which we
had to hack out to make things work properly. Also,
there is no decent font support built in, so a wrapper
was written to the Freetype font renderer, all owing us
to draw cacded anti-aliased True Type fonts to the

display at very high speeds. Spedl is everything, and
so we use large anounts of memory (which is chegp
and abundant) to store things that we will use more
than orce, rather than create them repeatedly.

4.5 OpenGL Support

The GGl library was seleded as it was the only
available solution at the time that worked properly.
Spead is everything, and so having proper 3D
hardware handle the rendering is aways preferable.
Mogt of the processng in Tinmith happens quite
quickly except for the rendering stage, which is the
most complex when dealing with large models.

OpenGL was, and always will be, the red goal, but
unfortunately, the Mesa software-only renderer was
useless as it was too slow. Windows has aways had
drivers for OpenGL hardware, but these were not
available to use with Linux. At the start of 2000,
proper hardware accderated 3D under XFreeB6 was
amost non-existent, but reaently a number of new
drivers have been written to support this. When these
drivers become stable, available with standard
distributions, and are ale to operate with laptop D
chipsets like ATI Mobile Rage, then Tinmith will be
modified to use this, as having hardware do D
rendering is always preferable.

When the system was ported to GGI, a wustom 3D
renderer was written to handle the drawing of the
models. However, the internal structure of this was
optimised for OpenGL rather than the astom
renderer, and the @mde was written so it would be
easy to add the necessary OpenGL cdls when it
becanefeasible.

Due to the design of the GGI library, it should be
possble to make GGl work with OpenGL, rather
than having to throw al the previous code avay. GGI
supports dynamic loading and extensions, and some
work is currently being dore on writing a generic 3D
APl which fits into OpenGL — the progress of this
project is unknown howvever.

4.6 Summary

Using free software toadls and libraries has provided
the aility to be very flexible axd create some
powerful software. The operating system is very
efficient and can be stripped dovn to the minimum
required software so that mgjority of the CPU time is
dedicated to processing incoming data to render the
HMD output. However, Linux currently ladks API
support for things like writing games (which Tinmith
is very similar to in requirements) and as a result, a
number of wrapper libraries and hadks were made to
make everything fit together. Having proper 2D and
3D with hardware support would make the
development of the system alot easier. Fortunately, a
dedicated team of developers is making new progress
inthisarea d thetime, however, these things all take
time and resources.

5 Software Architecture

5.1 Introduction

Kernelstend to provide only very limited services to
hardware — open(), read(), write(), and some simple
controls via ioctl(). However, orly limited
functiondlity is supgied and so the rest of it is
implemented in user-land wing libraries like GNU
libC. Other systems like X provide interfaces to
devices like mice and dsplays, to remove the
complexity of having to ded with so many different
kinds of hardware. However, just having low level
librariesthat can read desktop input devices and draw
2D picturesis not sufficient for AR/VR techndogy.

AR/VR isavery new area and is also immature, with
lots of different kinds of tradkers, inpu devices, and
graphics hardware avail able. Each of them supports a
different standard, and there are no standard APIs to
interface to them.

In order to implement test AR applicaions for our
reseach, a set of libraries needed to be developed to
provide aset of basic functions that could be reused.
The Tinmith system is an architecture that developers
can use to develop AR (and aher) applications that
ded with trackers, input devices, networks, and
graphics. Many of the interfaces to the kernel in libC
are very primitive and so higher level interfaces are
provided to hide avay many of the details, making
life eaier for the developer. It also provides support
a very high levels to process the protocols from
various different tracking devices into a mmmon
format, for other code to real. This makes coding the
rest of the system easier as the developer only has to
worry about high level problems and ot trivial ones
like parsing tradker outputs.

5.2 Overall Modular Structure

The HMD snap shots shown as examples in this
paper are redly only the tip of the iceberg. The
Tinmith system is not just asingle processrunning on
a madine, but in fact a mllection of separate
software processes that communicate with ead other
using TCP/IP. Each process tends to perform a
separate function and can be plugged in together as
ceatain neals arise. Proper Unix processes were
originally used because threads were not fully stable
at the time of initial design. Modules that have bugs
can be kept separate so any memory problems can be
isolated from the rest of the system and debugged
individually. The achitecture allows us to manage
complexity by keeping things separate from each
other, where possible. Some of the modules in the
system are outlined in the foll owing subsections.

5.2.1 Harvester Module

The most important modue is the harvester, which
gathers data in the system. This modue polls al the
serial ports available, and parses the incoming data
from the variety of different hardware tradkers
plugged in. Tinmith defines spedal structures for
storing position and orientation information, and the

values are parsed and stored into these standard
containers. These values are then made available ona
networked dbject bus for other modulesto receve.

5.2.2 Navigation Module

This module takes in positioninformation, and uses it
to make steering cdculations for the user. The
modue mntainsalist of all waypaints in the system,
aswell asthe arrently selected ore, and as each new
position update is received from the harvester
modue, the bearing and dstance ae recdculated.
These values are then made available for other
moduesto use.

5.2.3 Display Module

This module is the other core modue, it takes in
values from the harvester and navigation modues,
and uses these to produce the display seen by the
user. Any key presss recaved onthe keyboard are
made available to ather modules that need to use this
information for controls.

5.2.4 Sound and Watchdog Modules

This process continuously monitors the various
variables in the system, and will soundaudible (beeps
or wave sound files) and/or spoken (synthesized
voice) alarms when it is detected that these values
have exceeded some parameter. For example, you
could setup the watchdog modue to sound an alarm
or spe&k an annauncement when you arrive within
100 metres of the destination waypaint.

5.2.5 Web Module

This process interfaces to CGI programs run by the
Apache web server, alowing users to find ait
information about the weaable computer from a web
browser. The module provides information about the
weaable location and orientation, and refreshes
continuously onthe screen. Thisis a good example of
how the system can be interfaced to systems that are
of different design.

5.2.6 DIS and LSAP Module

The weaable cmmputer contains an in-built object
tracking modue, which allows it to know the locaion
of objects in the world, and follow their movements.
Thisinterface has been written to all ow this tracker to
share information (both ways) with the DIS

(Distributed Interactive Smulation) and LSAP (Land
Situational Awareness Picture System) based
software used at DSTO. This ability once aain
demonstrates that the network architecture of Tinmith
dlows it to be extended and modified to fit the need
relatively easily. Given something like a radar
tracking device, it should be possible to modify the
system to processtargets and track moving red world
objects. If the hardware is capable of it, the system
shoud be @leto handeit.

5.3 Module Communications

To interconnect modues, we used a dient-server
style achitecture. The server is a data source for
other modues, and it listens on a TCP/IP socket
waiting for incoming requests from clients. A client
that wishes to receive data will contad the server,
and send a listen message to subscribe to it.
Whenever the server updates the value of this data, it
will send the new value out to al clients that have
registered an interest in the message. A client
receiving new data may use it to updite the screen, or
cdculate new navigation parameters, for example.
Note that many servers in the system are eatualy
clientsfor other servers as well.

The aitire system operates asynchronaudly, and is
data driven; if there is no rew data in the system, no
adion will be taken by any of the software modules.
To illustrate this, consider the cae of a new
incoming position from the GPS. The harvester will
process the new data, and then dstribute it to all
clients. The navigation modue will receve this
upckte, and recalculate navigation information. The
display modue will eventualy receve an update
from the harvester, and the new steering instructions
from the navigation modue, and use these to redraw
the screen to reflect the user’ s new location.

5.4 Software Library

To implement the modular architecture, a software
library to support this was designed, with goals being
to be flexible, extendible, and layered. Layering was
employed to provide increasing levels of abstraction
for alowing modues to interact with the system at
the gopropriate level they require, while & the same
time minimising code replicaion aaoss the system,
and locdising posshle errors. Rather than modules
focusing on communicating with each ather, the code

I

E Wearable Computer - Hardware Layer

Linux Kernel - Software Layer

MetaVR #
LIEbS : [Wireless LAN] [Compass |
5| Mod SAF Isapdis .
LSAP . ¢
Other Q' T Other O i
*Wearable [: *Wearable [:
IIIIIIIII - (AR RN L] - netWOrk

bus

only does the tasks it needs to do, and then makes
cdls to library functions that actually make
conrections, subscribe, and process new incoming
data. As aresult, writing software modues to fit into
the system is dmple, and with many of the low level
and repetitive detail s hidden away, also guite small.

The libraries provide functionality for distributed
processng, asynchronous 1/0, dynamic software
configuration, and automatic code generation (among
others):

5.4.1 Running modules in parallel over TCP/IP

Each of the modules are implemented as sparate
Unix processes. This dlows modues to be
distributed over multiple processors on one machine,
or multiple machines due to the network support. The
ahili ty for the system to support this at a fundamental
level improves the scdability for larger, resource
intensive gplications. For example, the outdoor
navigation system was distributed over both the
laptop and a second 486 weaable, which was
included to increase the limited 1/O capabili ties of the

laptop.

5.4.2 Asynchronous I/O event handling

The re of the library revolves around an event
handler which monitors open file descriptors and
waits for them to become available for reading or
writing. When data arrives on the socket, the data is
read, processed, and then handed to the calling code.
As the complexities of doing |/O are astracted away
from the cdling code, (to the point where even the
type of transport is not spedfied) it is straightforward
for the TCP implementation to be replaced by UDP
by simply rewriting the library code. Sow seria links
requiring writes to be buffered, and support for
handling devices sich as X servers, tty devices, and
seria ports are integrated in.

One interesting feature of the I/O library is the ability
to plug in simulated devices. During testing indoars,
it was possble to plug in software simulations
instead of real GPS and compass hardware, enabling
us to test the modues easily. Running GDB through
a HMD outdoors, with a keyboard on the grourd, is
not easy and very tiring onthe gyes.

5.4.3 Dynamic configuration from the DBMS

Most software tends to use daticaly compiled
cortrols, or possbly a anfiguration text file. Our
system takes configuration to the next level by
loading all system parameters sich as the location of
modues, port numbers, device names, and screen
colours into a series of relational database tables.
When the software initialises, it queries the database
and loads the values required. By sending messages
throughou the system when changes are made, it is
posshle for clients to reconfigure themselves by
querying the database again. The software does not
have to be restarted as would be required if the
controls were static. The database proved to be very
powerful because someone inside can change it

11

remotely via the network if needed. A secondfeature
is the strong type chedking by the database engine (in
our case PostgreSQL v6.5 rather than relying on
parsing a text file, which could contain errors. This
feature proved useful when performing testing
outdoors, for example, tuning the various display
options such as colours and font sizes.

5.4.4 Automatic message code generation

Each of the data values in the system (represented by
messages) needs to be able to be sent in a portable
fashion across the network. Since Tinmith is
designed to be compiled onboth big and little endian
machines (Sun and SGI machines use different byte
ordering than Intel), it is not good enough just to send
the message in hinary format. Also, as versions of the
software change, it would be agood feature if older
versions of the software could handle messages that
have new fields added, but the old ores ill remain
the same. A custom program called STC is used to
compile spedal message definition files into code
and headers that is responsible for serialising and
deserialising them for the network. The precompil er
saves alot of effort needed to write the awde by hand.

5.5 Summary

The Tinmith software architecture was designed from
the start to be flexible, and able to be extended in the
future. The modular design enables new comporents
to be plugged in easily, and many of the prototypes
created with this g/stem were not designed urtil after
the achitecture was complete. The achitecture is
data driven, and can benefit from distributing
comporents as separate processes across multiple
computers. A layered implementation eases
application development, incresses the overall
reliability of the software, and gives a degree of
deviceindependence.

6 Problems and Notes

During the development of the work presented here, a
number of issues and problems becane agparent.
Linux and its support environment is not perfect, and
there are lots of places with room for improvement.
However, improvement is aways mething the free
software community has excedled at, a good example
being the KDE and Gnome projects, and so given
time these issues will surely be aldressed.

6.1 USB Support

Proper USB support for devices like video camerasis
currently only available in development kernels, and
the @de has been buggy at the best of times. Since
the USB codeis only very new, we had to put in alot
of effort to try and make Linux talk to the cameras.
At times the machine would lock up, a refuse to
communicate with the camera until reboot.

Also, support for many kinds of other cameras and
serid port interffaces is nonexistent, as the
manufacturers have not released spedfications or no
one has written a driver yet. We had to shop carefully

for USB devices to ensure they would work at all.
Thisis samething that will im prove with time, but as
of now the support is limited.

6.2 Graphics

Hardware accelerated 3D under XFree86 is just
coming of age now. New extensions to XFree86 v3
and v4 have been made to support certain cards, and
some manufacturers have supplied drivers for their
hardware. However, many chipsets are not supported,
or only with partial functionality. Also, tinkering with
al these new drivers and patches takes a lot of
predous time, having this supported as a standard
feature in some type of future Linux dstribution
would be alot easier to hande. For now, we ae ill
using custom written renders, but using OpenGL will
mean we can make the cde simpler and faster at the
sametime, freeéng up CPU resources for other uses.

6.3 Higher Level APIs

Linux and FreeBSD operating systems have
wonderfully designed kernels, and good low level
support in libC. However, there is not much higher
level functiondlity beyond that. Authors who wish to
write games for Linux must currently roll their own
libraries for sound, video, input devices, and
graphics, or they have to hunt aound for
development libraries which may or may not do the
job properly. This can take aconsiderable anount of
time and is probably a reason why some have not
ported their games to Linux. There is currently an
effort in the community to fix this, bu these ae far
from complete and some projects may not be
completed or have been abandoned.

7 Current Work

7.1 Tinmith Evolution 5

The Tinmith system (up to version four) worked
quite well for a number of yeas, however there are
also a number of limitations and problems with the
design. While the design had some feaures that
seamed like agood ideg some of them turned out to
be not used but a performance penalty was dill
imposed in the design. Also, there were limitations in
the design which were making it hard to implement
new user interface techniques that we wanted to try
out.

As a result, a new Tinmith design, evolution 5,
written in C++, was put on to the drawing board in
May, and work is currently progressing on that. The
first mgjor difference is the use of C++, version four
used ony standard C but portions of the code were
dedicated to providing object oriented features. In
redity, if you are using OO, you shoud use aproper
OO language. The mde mntained a lot of void*
pointers internaly and this was starting to cause
confusion and problems. Also, extra features like the
STL provide functionality that does not have to be
implemented yourself, and generally more efficient at
the sametime.

12

The other major problem was the software modules —
being implemented as sparate Unix processes
reguired them to use IPC to communicate with eah
other. As a result, processng large anounts of data
aso required large numbers of system cdls to move
dl the data aound. Waiting for the kernel to task
switch around four or more processes takes time, and
this was causing lag in the renderer output, and as
mentioned before, any lag that is preventable shoud
be diminated to improve the quality of the system.
Serialisation, rather than parall elisation, is the key to
efficiency here. Due to the way the libraries were
written, it was not possbhle to combine dl the
modues together into one withou making changes
everywhere, andthe dfort was not worth it.

So as aresult, the code was converted into C++, ead
part of the system was either modified or rewritten to
fit the new design. The low level parts were rewritten
into C++ code, and the high level code (which took
the most time to write) like the renderer, parsers,
navigation cdculations, 3D modeller, and graphicd
displays — were dl ported over relatively easily. The
original code has now been completely converted and
works as before, but now as a single processwith no
threads. Spreading the system over a network is dill
supported, but not a requirement like before. The
streamlined design makes the system run faster and
more efficiently, and the code is easier to understand
overal.

The lesson learned from this is that C++ (used
correctly of course) can write programs that are much
easier to understand, especially when they becmme
very complicated. Trying to solve an object oriented
problem using traditional functions and structures is
redly a hak and produces code which can cause
problems in the long run. The effort required to
convert from C to C++ has arealy paid off, with new
changes being easier to implement.

7.2 Software Availability

The Tinmith system is currently not available to the
pubic & thistime. This gystem is the vehicle | useto
perform the research for my PhD thesis, and is
currently undergoing major changes to support new
user interface techniques | am developing. The
architecture is usually having changes made, and is
not complete to the point where someone dse could
write their own applications easily — there is minimal
documentation except for my own designs and rotes.

During the completion of my research, the Tinmith-
evo5 architecture will be finalised, and uwsed to
develop a number of custom testing applications for
user evaluationtrials. At thistime, the code should be
useable by others and the university may alow the
release the @de to the general pubic. Also, | do not
have enough time & this point to prepare the code for
distribution, accept patches or code contributions
from other authors, and at the same time cmplete
my PhD thesis on schedule.

Kee an eye on the web page references included at

the badk, or contact the authors for more information
if youwould like to work with Tinmith.

8 Conclusion

The purpose of this paper wasto give the user an idea
as to what augmented redity is, and some of the
things it can do. Tinmith is one of only a handful of
augmented reality systems in the world today, and
with the new changes for evo5 being made, will also
be one of the most advanced.

Currently, most AR and VR systems tend to be read
only, the user participates by looking at things. With
Tinmith, the authors intend to allow users to interact
with the environment using custom built 3D input
devices to manipulate 3D widgets and objects. The
goal at the end is to produce for 3D environments
what people have been using on 2D desktops. There
are anumber of reseach problems that need to be
solved before this is possble however, just using 2D
tedchniques from the desktop is not goodenough.

Augmented redity is an exciting field to be
participating in, it is relatively new, and there are lots
of ideass to be eplored. Rather than just
reimplementing the whed, we ae researching and
designing the original whed itself.

9 References

[ARMY99] US Army Simulation, Training, and
Instrumentation Command (STRICOM), ModSAF —
http://www-
leav.army.mil/nsc/stow/saf/modsaf/index.htm

[AZUM97a] R. Azuma, Survey of augmented redlity.
Presence: Teleoperators and Virtual Environments,
6(4). 197.

[AZUM97b] R. Azuma, The challenge of making
augmented reality work outdoors. In Mixed Reality:
Merging Real and Virtual Worlds. Y. Ohta, H.
Tamura (ed), Springer-Verlag, 199. Chp 21 pp. 379
390.

[AZUM99] R. Azuma, B. Hoff, H. Nedy, R. Sarfaty.
A Motion-Stabilized Outdoor Augmented Redity
System. In Proc. of IEEE Virtual Reality '99,
Houston, TX, Mar 1999. pp 252259.

[BAS®7] L. Bass C. Kasabach, R. Martin, D.
Sewiorek, A. Smailagic, J. Stivoric. The design o a
weaable computer. In CHI 97 Looking to the Future,
pp 139146. ACM SIGCHI, ACM. 1997.

[FEIN97] S. Feiner, B. Macintyre, T. Hollerer, A.
Webster. A touring machine: Prototyping 3D mobile
augmented reality systems for exploring the urban
environment. In 1% Intl. Symposum on Wearable
Computers, Cambridge, Ma, Oct, 1997.pp 7481.

[GGIPOO] Generic Graphics
http://mwww.ggi-projed.org, 2000.

[JACO97] M. Jacobs, M. Livingston, A. State,
Managing Latency in Complex Augmented Redity
Systems. In Proc. 1997 Symposium on Interactive 3D

Interface Project,

13

Graphics, Providence, RI, Apr 1997.pp 4954.

[MANN96] S. Mann, Smart Clothing: The Shift to
Weaable Computing. In Comnunications of the
ACM, Val 39,No. 8,pp 23-24, Aug 1996.

[META99 MetaVR, Inc.,, MetaVR Virtual Reality
Scene Generator — http://www.metavr.com, 1999.

[PIEK98a] W. Piekarski, D. Hepworth, Outdoor
Augmented Readlity Navigation System — Project
Documentation. University of South Australia, 1998.

[PIEK99a] W. Piekarski, D. Hepworth, V. Demczuk,
B. Thomas, B. Gunther. A Mobhile Augmented
Redity User Interface for Terrestrial Navigation. In
Proc. of the 22 Australasian Computer Science
Conference, Auckland, NZ, Jan 1999. pp 122133

[PIEK99b] W. Piekarski, B. Thomas, D. Hepworth,
B. Gunther, V. Demczuk. An Architedure for
Outdoor Wearable Computers to Suppat Augmented
Redity and Multimedia Applicaions. In Proc. of the
3 International Conference on Knowledge-Based
Intelligent Information Engineering Systens,
Adelaide, South Australia, Aug 2000.pp 7G73.

[PIEK99c] W. Piekarski, B. Gunther, B. Thomas.
Integrating Virtual and Augmented Redlities in an
Outdoor Application. In Proc. of the 2™ International
Workshop onAugmented Reality, San Francisco, Ca,
Oct 1999. pp 45-54.

[THOM97] B. Thomas, S. Tyerman, K. Grimmer,
Evaluation o Three Input Mechanisms for Wearable
Computers. In 1% Intl. Symposum on Wearable
Computers, Cambridge, Ma, Oct, 1997.pp 2-9.

[THOMO98] B. Thomas, V. Demczuk, W. Piekarski,
D. Hepworth, B. Gunther, A Weaable Computer
System With Augmented Redity to Support
Terrestrial Navigation. In 2™ Intl. S/mposium on
Wearable Computers, Pittsburg, Pa, Oct 1998. pp
168171.

10Further Information

10.1 Reading Sources

There is a lot of information about the topics
discussed here onthe Internet, use a search engine to
look for it. A number of conferences proceelings
from IEEE and ACM contain interesting material,
such as:

- ACM CHI (Computer Human I nteradion)

- ACM 13D (Interactive 3D Graphics)

- ACM SIGGRAPH (Graphics)

- ACM UIST (User Interface Software and
Techndogy)

- IEEE ISAR (International Symposium on
Augmented Redlity)

- IEEE ISWC (International Symposium on
Weaable Computers)

10.2 Acknowledgements

The authors would like to adnowledge the following
people who have helped aut with the project in the
past:

- QuakeVR Project - Ben Close, John Donaghue,
JohnSquires, Philip De Bond, Mick Morris

- DSTO - Victor Demczuk and Franco Principe

- Campus Models— Arron Piekarski

10.3 About The Wearable Computer Lab

The Wearable Computer Lab is part of the Schod of
Computer and Information Science, Advanced
Computing Research Centre, at the University of
South Australia. Research areas in the lab include
outdoor weaable computing, augmented redity, 3D
user interfaces, computer graphics, and virtual redlity.

Apart from just hacking code, we have dso been
known to use soldering irons and sticky tape on
computer hardware occesionaly. The origind
badkpad in 1998 had the laptop attached to the
badkpadk using padking tape, and when weaing the
computer, an asdstant was always present to apply
more tape as needed.

10.3.1The Authors

Wayne Piekarski is currently doing a PhD at UniSA,
the thesis being titled, Human Machine Interfacing In
Augmented Reality Worlds. He is the person behind
the Tinmith system, designing and coding it to
support his research. Heis an avid Linux fan, starting
off in 1994 with Slackware 2.0 and kernel 1.1.9,
athough hes been known to use Windows and
FreeBSD boxes as well.

Dr. Bruce Thomas is a researcher and ledurer at
UniSA, performing work in a number of arees
including AR, VR, weaable computers, and user
interfaces. He is the supervisor for Wayne's PhD
reseach.

10.3.2More Information

For more information about our work, please visit the
following URLs or email us. We dways like to hear
about what people think abou our research. If you
fed that there is something you would like to
contribute, then please mntad us.

Information about the wearable lab UniSA

d

http://wearables.unisa.edu.au

Information on the Tinmith project
http://tinmith.unisa.edu.au

The author’'s home page and email address
http://www.cs.unisa.edu.au/~ciswp
wayne@cs.unisa.edu.au
thomas@cs.unisa.edu.au

14

eadin

2o0 isioneNore " PtOSUHAbE -5

15 Oct 1999 17.29-38
S8 5890 £139°37 1980’ LLH-WGS94

