
Theme-D Language Manual

Tommi Höynälänmaa

October 31, 2018

ii

Copyright (C) 2012-2018 Tommi Höynälänmaa

Contents

1 Introduction 1

2 Hello World 3

3 Programs and Modules 5

4 Variables, Objects, and Types 7
4.1 Variables . 7
4.2 Classes and Logical Types . 7
4.3 Parametrized Types . 10
4.4 Signatures and Parametrized Signatures 10
4.5 Built-in Classes . 10

4.5.1 <object> . 10
4.5.2 <class> . 11
4.5.3 <integer> . 11
4.5.4 <real> . 11
4.5.5 <boolean> . 11
4.5.6 <null> . 11
4.5.7 <symbol> . 11
4.5.8 <string> . 11
4.5.9 <character> . 11
4.5.10 <eof> . 11

4.6 Built-in Logical Types . 12
4.6.1 <type> . 12
4.6.2 <none> . 12

4.7 Built-in Parametrized Classes . 12
4.8 Built-in Parametrized Logical Types 12

4.8.1 :union . 12
4.8.2 :uniform-list . 12

4.9 Recursive Definitions . 13
4.10 Vectors . 13

4.10.1 General . 13
4.10.2 Normal Vectors . 13
4.10.3 Mutable Vectors . 13
4.10.4 Value Vectors . 13
4.10.5 Mutable Value Vectors . 14

4.11 Pairs and Tuples . 14
4.12 Foreign Function Interface . 14

iii

iv CONTENTS

4.13 Algorithm to Compute Subtype Relation 15
4.13.1 IsSubtype . 15
4.13.2 IsSubtypeSimple . 16
4.13.3 IsGeneralListSubtype . 17
4.13.4 IsSubtypeXUnion . 17
4.13.5 IsSubtypeUnionX . 17
4.13.6 IsSubtypePair . 18
4.13.7 IsSubtypeGeneralProc . 18
4.13.8 ProcAttributesMatch . 19
4.13.9 IsSubtypeProc . 19
4.13.10 IsSubtypeParamAbstract 20
4.13.11 IsSubtypeParamProc . 20
4.13.12 IsSubtypeGenAbstract . 21
4.13.13 IsSubtypeGenericProc . 21
4.13.14 IsSubtypeParamClassInst 22
4.13.15 IsSubtypeParamClassMixed 22
4.13.16ParamClassInstEqual . 22
4.13.17 IsSubtypeLoop . 23
4.13.18 IsSubtypeXSignature . 23
4.13.19 IsSignatureSubtype . 24

4.14 Algorithms to Compute Equivalence of Objects 24
4.14.1 General . 24
4.14.2 EqualValues? . 24
4.14.3 EqualContents? . 25
4.14.4 EqualObjects? . 26
4.14.5 EqualTypes? . 26
4.14.6 EqualByValue? . 27
4.14.7 EqualFields? . 27
4.14.8 EqualPairs? . 28
4.14.9 EqualPairContents? . 28
4.14.10EqualPrimitiveValues? . 28
4.14.11EqualPrimitiveObjects? . 29
4.14.12EqualVectors? . 30
4.14.13EqualVectorContents? . 30

5 Procedures 33
5.1 General . 33
5.2 Simple Procedures . 34
5.3 Generic Procedures . 34
5.4 Parametrized Procedures . 35
5.5 Abstract Procedure Types . 35
5.6 Subtyping of Procedure Types 35
5.7 Argument Type Modifiers and Static Type Expressions 35
5.8 Algorithm to Deduce the Values of Argument Variables 37

5.8.1 TranslateArguments . 37
5.8.2 TranslateArgument . 37

5.9 Algorithm to Dispatch Generic Procedure Applications 38
5.9.1 SelectBestMatch . 38
5.9.2 SelectNearestMethods . 39

5.10 Algorithm to Dispatch Parametrized Procedure Applications . . 39

CONTENTS v

5.10.1 DeduceArgumentTypes . 39
5.10.2 DeduceStepForward . 40
5.10.3 DeduceStepBackward . 41
5.10.4 DeduceTypeParams . 41
5.10.5 PrepareSourceType . 42
5.10.6 DeduceSubexprs . 43
5.10.7 DeduceSimpleType . 43
5.10.8 DeducePair . 44
5.10.9 DeduceRest . 44
5.10.10DeduceSplice . 44
5.10.11DeduceTypeLoop . 45
5.10.12DeduceUnionX . 46
5.10.13DeduceXUnion . 46
5.10.14DeduceUnionUnion . 47
5.10.15DeduceGenAbst . 47
5.10.16DeduceGenAbstResult . 47
5.10.17DeduceGenAbstArgList . 48
5.10.18DeduceNotSgnSgn . 48
5.10.19DeduceSgnSgn . 48

6 Expressions 51
6.1 General . 51
6.2 Macros . 51

6.2.1 Forms in the Macro Transformer Language 51
6.2.2 Procedures in the Macro Transformer Language 52

6.3 Procedure Application . 53
6.4 Instantiation of a Parametrized Type 54
6.5 Instantiation of Procedure Classes 54
6.6 Quotation . 54
6.7 Implicit Declaration of Recursive Definitions 55
6.8 Module Forms . 55

6.8.1 define-proper-program 55
6.8.2 define-script . 55
6.8.3 define-interface . 55
6.8.4 define-body . 56
6.8.5 import . 56
6.8.6 import-and-reexport 56
6.8.7 use . 57
6.8.8 @ . 57
6.8.9 reexport . 57
6.8.10 prevent-stripping . 57
6.8.11 prelink-body . 58

6.9 Toplevel Definitions . 58
6.9.1 define . 58
6.9.2 define-class . 58
6.9.3 define-generic-proc . 59
6.9.4 define-goops-class . 59
6.9.5 define-mutable . 60
6.9.6 define-volatile . 60
6.9.7 define-param-logical-type 60

vi CONTENTS

6.9.8 define-param-class . 61
6.9.9 define-param-proc-alt 61
6.9.10 define-param-signature 61
6.9.11 define-prim-class . 62
6.9.12 define-signature . 63
6.9.13 add-method . 63

6.10 Declarations . 64
6.10.1 declare . 64
6.10.2 declare-method . 64
6.10.3 declare-mutable . 64
6.10.4 declare-volatile . 65

6.11 Control Structures . 65
6.11.1 if . 65
6.11.2 if-object . 65
6.11.3 until . 66
6.11.4 begin . 66
6.11.5 set! . 66
6.11.6 guard-general . 66
6.11.7 execute-with-current-continuation (exec/cc) 67
6.11.8 generic-proc-dispatch 67
6.11.9 generic-proc-dispatch-without-result 68
6.11.10param-proc-dispatch 68
6.11.11param-proc-instance 68
6.11.12 strong-assert . 69
6.11.13assert . 69

6.12 Macro Forms . 69
6.12.1 define-syntax . 69
6.12.2 let-syntax . 69
6.12.3 letrec-syntax . 70
6.12.4 syntax-case . 70

6.13 Binding Forms . 70
6.13.1 let . 70
6.13.2 letrec and letrec* . 71
6.13.3 let-mutable, letrec-mutable, and letrec*-mutable . . 71
6.13.4 let-volatile, letrec-volatile, and letrec*-volatile . . . 71

6.14 Procedure Creation . 72
6.14.1 lambda . 72
6.14.2 lambda-automatic . 72
6.14.3 param-lambda . 73
6.14.4 param-lambda-automatic 73
6.14.5 prim-proc and unchecked-prim-proc 73
6.14.6 param-prim-proc and unchecked-param-prim-proc 74

6.15 Type Operations . 74
6.15.1 cast . 74
6.15.2 try-cast . 75
6.15.3 static-cast . 75
6.15.4 force-pure-expr . 75
6.15.5 match-type . 75
6.15.6 match-type-strong . 76
6.15.7 static-type-of . 76

CONTENTS vii

6.15.8 :tuple . 76
6.16 Object Creation . 77

6.16.1 constructor . 77
6.16.2 quote . 77
6.16.3 zero . 77

7 Special Procedures 79
7.1 Equality Predicates . 79

7.1.1 equal-values? . 79
7.1.2 equal-objects? . 80
7.1.3 equal-contents? . 80

7.2 Control Structures . 81
7.2.1 apply . 81
7.2.2 apply-nonpure . 81
7.2.3 call-with-current-continuation (call/cc) 82
7.2.4 call-with-current-continuation-nonpure (call/cc-nonpure) 82
7.2.5 call-with-current-continuation-without-result (call/cc-without-result) 83
7.2.6 field-ref . 83
7.2.7 field-set! . 84

7.3 Type Operations . 84
7.3.1 class-of . 84
7.3.2 is-instance? . 85
7.3.3 is-subtype? . 85

7.4 Vector Operations . 86
7.4.1 cast-mutable-value-vector 86
7.4.2 cast-mutable-value-vector-metaclass 86
7.4.3 cast-mutable-vector . 87
7.4.4 cast-mutable-vector-metaclass 87
7.4.5 cast-value-vector . 88
7.4.6 cast-value-vector-metaclass 88
7.4.7 cast-vector . 89
7.4.8 cast-vector-metaclass 89
7.4.9 make-mutable-value-vector 90
7.4.10 make-mutable-vector . 90
7.4.11 make-value-vector . 91
7.4.12 make-vector . 91
7.4.13 mutable-value-vector 92
7.4.14 mutable-vector . 93
7.4.15 value-vector . 93
7.4.16 vector . 94

7.5 Tuple Operations . 94
7.5.1 tuple-ref . 94
7.5.2 tuple-type-with-tail 95

8 Examples 97
8.1 Abstract Data Types . 97
8.2 Creators (high-level constructors) 98
8.3 Invoking the match-type Optimization 100
8.4 Purely Functional Iterators . 100

viii CONTENTS

9 Comments 103

List of Figures

4.1 Example inheritance hierarchy for simple classes. 9
4.2 Example inheritance hierarchy for parametrized classes. 31

ix

x LIST OF FIGURES

Chapter 1

Introduction

The purpose of programming language Theme-D is to extend Scheme with
static typing. Theme-D has an object system with single inheritance and multi-
methods. Theme-D also has parametrized types and parametrized procedures.
Translation shall mean the compilation and linking of a Theme-D program.
Theme-D is mainly intended to be a compiled language. The standard of pro-
gramming language Scheme can be found at [3]. Theory of type systems in
functional programming languages can be found at [2]. Homepage for guile
can be found at http://www.gnu.org/software/guile/. Homepage for Scheme48
is located in http://s48.org/. Homepage for the functional programming lan-
guage ocaml is located in http://caml.inria.fr/. Theme-D resembles Jaap Weel’s
Theme [4] but Theme-D is more dynamic and the objects in Theme-D need to
have type tags. I remember seeing a programming language called “bits”, ex-
tending Scheme by a static type system, but I was unable to find it again.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Hello World

Here is the implementation of “Hello World” in Theme-D:

(define-proper-program hello-world

(import (standard-library core)

(standard-library console-io))

(define main

(lambda (() <none> nonpure)

(console-display-line "Hello, world!"))))

3

4 CHAPTER 2. HELLO WORLD

Chapter 3

Programs and Modules

All the code in Theme-D is organized into units. A unit is either a program,
an interface or a body. A program is either a proper program or a script. A
combination of an interface and the body that implements it is called a module.
See sections 6.8.1, 6.8.2, 6.8.3, and 6.8.4 for the syntax for defining units.

A proper program has to define a procedure called called main. The accepted
argument types and result type of main depend on the target platform. But
every Theme-D implementation is required to accept the following for main:

1. Result type <none> or <integer>

2. Empty argument list, argument list consisting of one argument with type
(:uniform-list <string>), or a single argument of a tuple type con-
sisting only of <strings>.

When a proper program is executed all the toplevel expressions in the program
and in the modules it imports are executed and then the procedure main is
called. A script contains no main procedure. When a script is executed all the
toplevel expressions in the program and in the modules it imports are executed.

An interface contains all the definitions or declarations for the variables that
the module exports. An interface contains only declarations for the procedures
and the parametrized procedures that the module exports. A body contains
definitions of all private variables of the module and definitions of all the pro-
cedures and the parametrized procedures declared in the interface. Both the
interface and the body may import other modules using keyword import or
import-and-reexport. An interface may reexport variables imported from
other modules.

The module imports between the interfaces may not be cycled. I.e. if an
interface A imports module B directly or indirectly the interface of B may not
import module A. However, the body of B may import module A.

When an interface of a module A imports other modules the definitions and
declarations in the imported modules do not become visible automatically when
the module A is imported. However, an interface may contain reexport state-
ments, which export a variable imported from another interface. An interface
may also contain import-and-reexport statements, which import a module
and reexport all the variables it exports. The variables imported into an inter-
face become visible in the corresponding body automatically. A body always

5

6 CHAPTER 3. PROGRAMS AND MODULES

imports the interface of the module implicitly. This import may not be specified
explicitly in the import clause of the body. Modules can also be used without
importing its contents into the toplevel namespace. This is done with keyword
use. The variables in this kind of modules are accessed with syntax (@ module
variable).

An interface must not contain any toplevel procedure calls. A body or a
program may contain toplevel procedure calls. A body or a program contain-
ing toplevel procedure calls must ensure that the called procedures are linked
properly using the form prelink-body, see section 6.8.11.

Chapter 4

Variables, Objects, and
Types

4.1 Variables

A variable whose value cannot be changed is called a constant. A variable
whose value can be changed is called a mutable variable. A volatile variable is a
mutable variable that can be changed by pure expressions (expressions without
side effects). Note that it is possible to change the components of a constant,
e.g. setting elements of a constant vector. Variables are lexically scoped as in
Scheme.

4.2 Classes and Logical Types

Every Theme-D object has a static type and a dynamic type. The static type of
an object is the translation time type of the object and the dynamic type of an
object is its runtime type. The dynamic type of a Theme-D object is always a
class. Types that are not classes are called logical types.

A type may inherit from another type. A type always inherits from itself.
When type A inherits from type B and variable y has been declared with type
B a value y of type A can be assigned to y. We write A :< B to mean that
A inherits from B . When the static or dynamic type of a value or a variable
y is A and A inherits from B we say that y is instance of type B . Every type
except <none> inherits from the class <object>. Every class is an instance of
class <class>. Class <class> is an instance of itself. A class whose instances
are classes is called a metaclass.

Every class that is not an instance of a parametrized class is called a simple
class. Every simple class except <object> and <none> has an immediate super-
class, which is itself a class. We write A ::< B to mean that B is the immediate
superclass of A. A class A inherits from a class B if and only if A ::< B or
there exists a finite sequence X1, ..., Xn consisting of classes so that A ::< X1

::< ...::< Xn ::< B . The dynamic type of an object y is always a subtype of the
static type of y . See section 6.9.2 for the syntax for defining new classes. See
subsection 4.13 for the algorithm that checks if one type is a subtype of another

7

8 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

type.
Every class has the following boolean-valued attributes:

• inheritable

• immutable

• equality by value

A class is inheritable if and only if it is allowed to be a superclass of another
class. If a class is immutable no fields of instances of the class can be changed.
If a class is equal by value two instances of the class are equal if and only if all
of their fields are equal. Otherwise instances of a class are equal if and only if
they are the same object.

Each field of a class has a name, type, read access specifier, write access
specifier, and an optional initial value. Possible values of the access specifiers
are public, module, and hidden. Specifier public means that the field is
accessible everywhere. Specifier module means that the field is accessible only
in the same module where the class is defined. Specifier hidden means that
the field is accessible nowhere. Its value can be set in object creation (in make
expression), though. A field may have an initial value, which has to be an
instance of the type of the field. When an object is created with make only the
values of fields without an initial value are given as the arguments of make.
Keyword make actually calls the constructor of a class in order to create an
object. Expression (make class arg1 ...argn) is equivalent to ((constructor
class)arg1 ...argn).

The access of a constructor is specified in a similar way. If a constructor is not
visible somewhere keyword make cannot be used for the class at that position.
Note that if you want to define an abstract class which can be inherited but not
instantiated define the constructor access to hidden.

A class may define a zero value, which can be accessed with syntax (zero

class), see section 6.16.3. This is useful for parametrized numerical classes. A
parametrized class may define a zero value for its instances, see file
theme-code/tests/test220.thp. For example, vector addition can be imple-
mented as follows:

(define-param-proc my-sum (%number)

(((v1 (:mutable-value-vector %number))

(v2 (:mutable-value-vector %number)))

(:mutable-value-vector %number)

(force-pure))

(let ((len1 (mutable-value-vector-length v1))

(len2 (mutable-value-vector-length v2)))

(assert (= len1 len2))

(let ((result (make-mutable-value-vector

%number len1 (zero %number))))

(do ((i <integer> 0 (+ i 1)))

((>= i len1))

(mutable-value-vector-set!

result i

(+ (mutable-value-vector-ref v1 i)

4.2. CLASSES AND LOGICAL TYPES 9

(mutable-value-vector-ref v2 i))))

result)))

A diagram about an example simple class inheritance hierarchy is presented
in figure 4.1. A thick line means “A is an instance of B” and a thin line “A
inherits from B”. A rectangle means a class and a circle a non-class object.

<object>

<window>

<dialog>

<class>

my-dialog

Figure 4.1: Example inheritance hierarchy for simple classes.

Logical types are specified simply be defining a constant whose value is some
type. Here is an example of a logical type definition:

10 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

(define <my-type> (:union <real> <integer>))

4.3 Parametrized Types

See sections 6.9.8 and 6.9.7 for the syntax of parametrized type definitions.
Parametrized types are types that have type parameters. When values (types)
are assigned to the type variables we get an instance of the parametrized type.
Instances of parametrized classes are classes and instances of parametrized log-
ical types are logical types. Instances are created with syntax

(parametrized-type type-parameter1 ...type-parametern)

A diagram about an example parametrized class inheritance hierarchy is pre-
sented in figure 4.2. A thick line means “A is an instance of B” and a thin line
“A inherits from B”. A rectangle means a class and a circle a non-class object.

4.4 Signatures and Parametrized Signatures

A signature is a data type defined by specifying the procedures that the object
belonging to the signature has to implement. They resemble Java interfaces
but signatures are multiply dispatched. Parametrized signatures are signatures
parametrized by type parameters. See sections 6.9.10 and 6.9.12.

If an application of a procedure contains signatures as an argument type we
use the following algorithm to check if the application is valid:

1. If the arguments contain free type variables the type is checked runtime
or when the type variables are bound.

2. Substitute keyword this by the signature itself in all the procedure spec-
ifiers referring to the same procedure as the procedure to be called.

3. If such specifiers were found check that the application argument type list
is a subtype of an argument type of some of the substituted procedure
specifiers. Otherwise handle the application as a normal procedure call.

See section 8.1 for examples about signatures.

4.5 Built-in Classes

The classes listed in this section are also called primitive classes. An instance
of a primitive class is called a primitive object.

4.5.1 <object>

Every value in Theme-D is an instance of <object>. Every type except <none>
is a subtype of <object>. Class <object> defines no fields. Class <object>

is inheritable, immutable, and not equal by value. Note that subclasses of
<object> do not need to be immutable.

4.5. BUILT-IN CLASSES 11

4.5.2 <class>

Every class in Theme-D is an instance of <class>. Class <class> is an instance
of itself. Class <class> is inheritable, immutable, and not equal by value.

4.5.3 <integer>

Instances of class <integer> are integer numbers. Class <integer> is im-
mutable, equal by value, and not inheritable.

4.5.4 <real>

Instances of class <real> are real numbers. Class <real> is immutable, equal
by value, and not inheritable. Note that <integer> objects are not instances
of <real>.

4.5.5 <boolean>

Boolean values are similar to Scheme boolean values. Class <boolean> is im-
mutable, equal by value, and not inheritable.

4.5.6 <null>

Class <null> is the class of an empty list. The empty list object is denoted by
null or () and it behaves similarly to the empty list in Scheme. Class <null>

is immutable, equal by value, and not inheritable. Note that if you use notation
() you usually have to quote it as in Scheme.

4.5.7 <symbol>

Symbols are similar to Scheme symbols. Class <symbol> is immutable, equal
by value, and not inheritable.

4.5.8 <string>

Strings are similar to Scheme strings. Class <string> is immutable, equal by
value, and not inheritable.

4.5.9 <character>

Characters are similar to Scheme characters. Class <character> is immutable,
equal by value, and not inheritable.

4.5.10 <eof>

Class <eof> is the class of end-of-file object, which is similar to the Scheme end-
of-file object. There are no other instances of <eof>. Class <eof> is immutable,
equal by value, and not inheritable. The end-of-file object is denoted by eof.

12 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

4.6 Built-in Logical Types

4.6.1 <type>

Every type (class or logical type) in Theme-D is an instance of <type>.

4.6.2 <none>

No object in Theme-D is an instance of <none>. The result type of a procedure
returning no value shall be <none>.

4.7 Built-in Parametrized Classes

The builtin parametrized classes are:

• :procedure

• :simple-proc

• :param-proc

• :gen-proc

• :vector

• :mutable-vector

• :value-vector

• :mutable-value-vector

• :pair

See chapter 5 for descriptions of the procedure classes. See subsection 4.10
for descriptions of the vector classes. See subsection 4.11 for descriptions of
pairs.

4.8 Built-in Parametrized Logical Types

4.8.1 :union

Let u be a union type created by (:union a1 ...an). Let t1 ...tm be the
translated argument list generated from a1 ...an , see section 5.7. An object
obj is an instance of u if and only if obj is an instance of some tk , k = 1, ...,
n . Object obj is allowed to be an instance of multiple component types tk′ .

4.8.2 :uniform-list

Let u be a uniform list type created by (:uniform-list a). Let (t) be the trans-
lated argument list generated from (a). Objects of logical type u are lists having
elements of type t . A parametrized logical type equivalent to :uniform-list

can be created with code

4.9. RECURSIVE DEFINITIONS 13

(declare :my-list <param-logical-type>)

(define-param-logical-type :my-list (%type)

(:union (:pair %type (:my-list %type)) <null>)

4.9 Recursive Definitions

In general, when you define a variable recursively you have to forward declare
it. However, forward declaration is not needed with define-procedure and
define-param-proc. Notice how a forward declaration of a logical type is
done in the following case:

(declare <my-list> :union)

(define <my-list> (:union (:pair <integer> <my-list>) <null>))

4.10 Vectors

4.10.1 General

Parametrized classes :vector, :mutable-vector, :value-vector, and :mutable-value-vector

are called vector metaclasses. Instances of vector metaclasses are called general
vector classes. Objects of general vector classes are called general vectors.

4.10.2 Normal Vectors

Instances of :vector are called normal vector classes. Objects of class (:vector
t) are immutable one-dimensional vectors having elements of type t . See sub-
sections 7.4.16 and 7.4.12 for the creation of vectors. The first element of a
vector has index 0.

4.10.3 Mutable Vectors

Instances of :mutable-vector are called mutable vector classes. Objects of class
(:mutable-vector t) are mutable one-dimensional vectors having elements of
type t . See subsections 7.4.14 and 7.4.10 for the creation of mutable vectors.
The first element of a mutable vector has index 0.

4.10.4 Value Vectors

Instances of :value-vector are called value vector classes. Class :value-vector
is similar to :vector except the instances of :value-vector are equal by value.
See subsections 7.4.15 and 7.4.11 for the creation of value vectors. The first el-
ement of a value vector has index 0.

14 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

4.10.5 Mutable Value Vectors

Instances of :mutable-value-vector are called mutable value vector classes.
Class :mutable-value-vector is similar to :mutable-vector except the in-
stances of :mutable-value-vector are equal by value. See subsections 7.4.13
and 7.4.9 for the creation of mutable value vectors. The first element of a
mutable value vector has index 0.

4.11 Pairs and Tuples

When a1 and a2 are objects the class of the pair (a1 . a2) is (:pair t1 t2) where
t1 is the class of a1 and t2 is the class of a2.

Let u be a pair class created by (:pair a1 a2). Let (t1 t2) be the
translated argument list generated from (a1 a2). Object of type u is an
immutable pair whose first component is of type t1 and second component of
type t2 . Let a1 , a2 , b1 , and b2 be type formulas. Let (t1 t2) be the
translated argument list generated from (a1 a2) and (u1 u2) the translated
argument list generated from (b1 b2) Now type (:pair a1 a2) is a subtype
of (:pair b1 b2) if and only if t1 is a subtype of u1 and t2 is a subtype of
u2 .

A tuple type is a type of a finite sequence of possibly nonuniform objects.
Formally, if tk, k = 1, . . . , n, are types the tuple type (:tuple t1, ..., tn) is
equivalent to (:pair t1 (:pair t2 ... (:pair tn <null>) ...)).

4.12 Foreign Function Interface

The semantics of prim-proc, unchecked-prim-proc, param-prim-proc,
unchecked-param-prim-proc, define-prim-class, define-goops-class, and
define-normal-goops-class depend on the Theme-D translation target plat-
form. See 6.14.5 and 6.14.6 for the definition of primitive procedures. The
keyword define-normal-goops-class is discussed in the standard library ref-
erence. If you want to use your own Scheme procedures with these keywords you
can specify the Scheme files to be loaded into the runtime Theme-D environ-
ment with environment variable THEME D CUSTOM CODE. Separate the file names
with :’s. See files theme-d-code/tests/test223.thp and runtime/run2.scm

for an example. A Scheme implementation of a parametrized primitive proce-
dure has to take the type parameters as arguments before the proper procedure
arguments. See theme-d-code/tests/test142.thp and
theme-d-code/tests/aux-my-map.scm for an example. Custom primitive classes
may be defined with keyword define-prim-class. See section 6.9.11 and tests
test223, test224, and test226. GOOPS classes may be imported into Theme-
D with keyword define-goops-class. See section 6.9.4 and tests test279 and
test280.

Foreign function interface may cause problems with the linker output strip-
ping. For example, suppose you define class <gtk-widget> and its subclass
<gtk-window>. Suppose also that you define procedure gtk-window-new in
your foreign code so that the procedure returns a gtk-window but its declared
return type is <gtk-widget>. Then it is possible that the linker strips the class
<gtk-window> off from the target code even though it is needed by the type

4.13. ALGORITHM TO COMPUTE SUBTYPE RELATION 15

system. This problem may be solved by a prevent-stripping expression. For
Theme-D-Gnome this can also be solved by using creator procedures instead of
GTK constructors.

The custom primitive classes have to be disjoint with each other and with
built-in primitive classes. That is, no object shall belong to two different prim-
itive classes. GOOPS classes may overlap with each other but no two GOOPS
classes shall be identical.

4.13 Algorithm to Compute Subtype Relation

4.13.1 IsSubtype

Arguments:
t1: a type
t2: another type
M : the set (list) of types already visited

Result:
is-subtype? : #t if t1 is a subtype of t2, #f otherwise

Algorithm: IsSubtype[t1, t2, M]

1. If t1 is incomplete or t2 is incomplete return #t iff t1 and t2 are the same
object and #f otherwise.

2. If (t1, t2) ∈M return #t.

3. Set M ′ := M ∪ {(t1, t2)}.

4. If t1 = t2 return #t.

5. If t2 = <object> return #t.

6. If t1 and t2 are type variables return #t iff t1 and t2 are equal.

7. If t1 and t2 are primitive classes then return #t iff they are the same object.

8. If t1 is not a signature and t2 is a signature return IsSubtypeXSignature[t1,
t2, M ′].

9. If t1 and t2 is are signatures return IsSignatureSubtype[t1, t2, M ′].

10. If t1 is a union return IsSubtypeUnionX[t1, t2, M ′].

11. If t2 is a union return IsSubtypeXUnion[t1, t2, M ′].

12. If t1 = <none> then return #t iff t2 = <none>.

13. If t2 = <none> then return #t iff t1 = <none>.

14. If both t1 and t2 are pair classes return IsSubtypePair[t1, t2, M ′]. If only
one of t1 and t2 is a pair class return #f.

16 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

15. If both t1 and t2 are procedure types return IsSubtypeGeneralProc[t1, t2,
M ′].

16. If t1 and t2 are both vector classes, t1 = (:vector <a>) and t2 = (:vector

), return IsSubtype[<a>, , M ′].

17. If t1 and t2 are both value vector classes, t1 = (:value-vector <a>) and
t2 = (:value-vector), return IsSubtype[<a>, , M ′].

18. If both t1 and t2 are instances of a parametrized logical type whose type
arguments contain type modifiers return #t iff the contents of t1 and t2
are equal and #f otherwise.

19. If t1 and t2 are splice expressions return #t iff the component type of t1
is a subtype of the component type of t2. If only t2 is a splice expression
return #f.

20. If t1 and t2 are rest expressions return #t iff the component type of t1 is a
subtype of the component type of t2. If only t2 is a rest expression return
#f.

21. If t1 and t2 are type list expressions return IsGeneralListSubtype[a, b] where
a and b are the contents of t1 and t2 respectively. If only t2 is a type list
expression return #f.

22. If t1 and t2 are type loop expressions return IsSubtypeLoop[t1, t2, M ′]. If
only t2 is a type loop expression return #f.

23. If t1 and t2 are type join expressions return IsGeneralListSubtype[a, b]
where a and b are the contents of t1 and t2 respectively. If only t2 is a
type join expression return #f.

24. If t1 and t2 are instances of a parametrized class return IsSubtypeParam-
ClassInst[t1, t2, M ′].

25. If one of t1 and t2 is an instance of a parametrized class and one is class
that is not an instance of a parametrized class return IsSubtypeParamClass-
Mixed[t1, t2, M ′].

26. If t1 and t2 are classes return IsSubtypeSimple[t1, t2].

27. else return #f.

4.13.2 IsSubtypeSimple

Arguments:
t1: a class
t2: another class

Result:
is-subtype? : #t if t1 is a subtype of t2, #f otherwise

Algorithm: IsSubtypeSimple[t1, t2]

4.13. ALGORITHM TO COMPUTE SUBTYPE RELATION 17

1. If t1 = t2 return #t else

2. if t2 = <object> return #t else

3. if t1 = <object> and t2 6= <object> return #f else

4. return IsSubtypeSimple[s, t2] where t1 ::< s .

4.13.3 IsGeneralListSubtype

Arguments:
a: a list of type expressions
b: another list of type expressions

Result:
is-subtype? : #t iff a is a subtype of b

Algorithm: IsGeneralListSubtype[a, b]

Let a = (a1, . . . , an) and b = (b1, . . . , bm) Return #t iff n = m and ai is a
subtype of bi for all i = 1, . . . , n.

4.13.4 IsSubtypeXUnion

Arguments:
t : a class
u: a union type
M : the set (list) of types already visited

Result:
is-subtype? : #t if t is a subtype of u, #f otherwise

Algorithm: IsSubtypeXUnion[t , u, M]

1. Let v be the vector of the member types of u, v := (u1 ...un) .

2. Let result := #f .

3. For i := 1, . . . , n

(a) If IsSubtype[t ,ui, M] then set result := #t and break the loop.

4. Return result .

4.13.5 IsSubtypeUnionX

Arguments:
u: a union type
t : a class
M : the set (list) of types already visited

18 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

Result:
is-subtype? : #t if u is a subtype of t , #f otherwise

Algorithm: IsSubtypeUnionX[u, t , M]

1. Let v be the vector of the member types of u, v := (u1 ...un) .

2. Let result := #t .

3. For i := 1, . . . , n

(a) If IsSubtype[ui, t M] = #f then set result := #f and break the loop.

4. Return result

4.13.6 IsSubtypePair

Arguments:
t : a pair class
u: a pair class
M : the set (list) of types already visited

Result:
is-subtype? : #t if t is a subtype of u, #f otherwise

Algorithm: IsSubtypePair[t , u, M]

Let (a1 a2) be the component types of t and (b1 b2) be the component
types of u.

1. If IsSubtype[a1, b1, M] return IsSubtype[a2, b2, M] else return #f.

4.13.7 IsSubtypeGeneralProc

Arguments:
t1: a procedure type
t2: a procedure type
M : the set (list) of types already visited

Result:
is-subtype? : #t iff t is a subtype of u

Algorithm: IsSubtypeGeneralProc[t1, t2, M]

If any of the following is true return #f:

1. Object t1 is an abstract procedure type and t2 is not an abstract procedure
type.

2. Object t1 is a simple procedure class and t2 is either a parametrized or
generic procedure class.

4.13. ALGORITHM TO COMPUTE SUBTYPE RELATION 19

3. Object t1 is either a parametrized or generic procedure class and t2 is a
simple procedure class.

4. Object t1 is a parametrized procedure class and t2 is a generic procedure
class.

If some of the following is true:

1. Objects t1 and t2 are abstract procedure types.

2. Objects t1 and t2 are simple procedure classes.

3. Object t1 is a simple procedure class and t2 an abstract procedure type.

return IsSubtypeProc[t1, t2, M].
If t1 is a parametrized procedure class and t2 is an abstract procedure class

return IsSubtypeParamAbstract[t1, t2, M]. If t1 and t2 are parametrized procedure
classes return IsSubtypeParamProc[t1, t2]. If t1 is a generic procedure class and
t2 is an abstract procedure class return IsSubtypeGenAbstract[t1, t2, M]. If t1
and t2 are generic procedure classes return IsSubtypeGenericProc[t1, t2, M].

If t1 is a generic procedure class and t2 is a parametrized procedure class
return #t iff the tree structure of some of the methods of t1 is identical to t2(type
variables may be named differently).

4.13.8 ProcAttributesMatch

Arguments:
(p1, a1, n1, s1): attributes of the first procedure
(p2, a2, n2, s2): attributes of the second procedure

Result:
is-subtype? : #t iff the first procedure type can be a subtype of the

second
The attributes are: (purity, always returns, never returns, and static method).

All of them are boolean valued. The algorithm returns #t iff all of the following
conditions are true:

• ¬((¬p1) ∧ p2)

• ((¬a2) ∧ (¬n2)) ∨ (a1 = a2 ∧ n1 = n2)

• ¬((¬s1) ∧ s2)

4.13.9 IsSubtypeProc

Arguments:
t : a procedure class
u: a procedure class
M : the set (list) of types already visited

Result:
is-subtype? : #t if t is a subtype of u, #f otherwise

20 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

Algorithm: IsSubtypeProc[t , u, M]

Let A1 be the procedure attributes of t and A2 the procedure attributes of
u. Let a1 be the argument list type of t , r1 the result type of t , and p1 the
purity (boolean value) of t . Define the corresponding variables a2, r2, and p2

for u.
If ProcAttributesMatch[A1,A2] is true then

1. Let st1 := IsSubtype[a2, a1, M] .

2. If st1 = #t then return IsSubtype[r1, r2, M] else return #f.

else return #f.

4.13.10 IsSubtypeParamAbstract

Arguments:
t : a parametrized procedure class
u: an abstract procedure type
M : the set (list) of types already visited

Result:
is-subtype? : #t if t is a subtype of u, #f otherwise

Algorithm: IsSubtypeParamAbstract[t , u, M]

Let A1 be the procedure attributes of t and A2 the procedure attributes of
u. If ProcAttributesMatch[A1,A2] is true then

1. Deduce type parameters for types t and u. See section 5.10.

2. If some of the type parameters in objects t and u could not be deduced
return #f.

3. Substitute the deduced type parameter values to objects t and u. Denote
the result objects t′ and u′. Let a1 be the argument list type of t′ and r1
the result type of t′. Define the corresponding variables a2 and r2 for u′.

4. If r1 is a subtype of r2 and a2 is a subtype of a1 (note the order) return
#t else return #f.

else return #f.

4.13.11 IsSubtypeParamProc

Arguments:
t : a parametrized procedure class
u: a parametrized procedure class

Result:
#t if t is identical to u, #f otherwise

4.13. ALGORITHM TO COMPUTE SUBTYPE RELATION 21

Algorithm: IsSubtypeParamProc[t , u]

If t and u have the same number of type parameters create new type variables
and substitute them into t and u. Return #t iff the new type t’ is a subtype of
the new type u’ .

4.13.12 IsSubtypeGenAbstract

Arguments:
t : a generic procedure class
u: an abstract procedure type
M : the set (list) of types already visited

Result:
is-subtype? : #t if t is a subtype of u, #f otherwise

Algorithm: IsSubtypeGenAbstract[t , u, M]

1. Let m := the list of methods of t and n := the number of methods in
m .

2. For i := 1, . . . , n

(a) If IsSubtype[m[i], u, M] break the loop and return #t.

3. Return #f.

4.13.13 IsSubtypeGenericProc

Arguments:
t : a generic procedure class
u: a generic procedure class
M : the set (list) of types already visited

Result:
is-subtype? : #t if t is a subtype of u, #f otherwise

Algorithm: IsSubtypeGenericProc[t , u, M]

1. Let m1 := the list of methods of t , m2 := the list of methods of u , n1

:= the number of methods in m1 , and n2 := the number of methods in
m2 .

2. Let result2 := #t .

3. For i := 1, . . . , n1

(a) result1 := #f

(b) For j := 1, . . . , n2

22 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

i. If IsSubtype[m1[i], m2[j], M] then set result1 := #t and break
the inner loop.

(c) If result1 = #f then set result2 := #f and break the outer loop.

4. Return result2 .

4.13.14 IsSubtypeParamClassInst

Arguments:
t1: a class
t2: another class
M : the set (list) of types already visited

Result:
is-subtype? : #t if t1 is a subtype of t2, #f otherwise

Algorithm: IsSubtypeParamClassInst[t1, t2, M]

1. If t2 = <object> return #t else

2. if t1 = <object> and t2 6= <object> return #f else

3. if ParamClassInstEqual[t1, t2, M] return #t else return IsSubtype[s, t2, M]
where t1 ::< s .

4.13.15 IsSubtypeParamClassMixed

Arguments:
t1: a class
t2: another class
M : the set (list) of types already visited

Result:
is-subtype? : #t if t1 is a subtype of t2, #f otherwise

Algorithm: IsSubtypeParamClassMixed[t1, t2, M]

1. If t2 = <object> return #t else

2. if t1 = <object> and t2 6= <object> return #f else

3. else return IsSubtype[s, t2, M] where t1 ::< s .

4.13.16 ParamClassInstEqual

Arguments:
t1: a class
t2: another class
M : the set (list) of types already visited

4.13. ALGORITHM TO COMPUTE SUBTYPE RELATION 23

Result:
#t if t1 is equal to t2, #f otherwise

Algorithm: ParamClassInstEqual[t1, t2, M]

Let p1 := #t iff t1 is an instance of a parametrized class and p2 := #t iff
t2 is an instance of a parametrized class .

1. If (¬p1) ∧ (¬p2) return t1 = t2 as an object

2. else if ((¬p1) ∧ p2) ∨ (p1 ∧ (¬p2)) return #f

3. else if

(a) (class-of t1) is equal to (class-of t2) as an object,

(b) Class t1 has as many type parameters as class t2 (we know here that
both t1 and t2 have to be instances of parametrized classes), and

(c) Each of the type parameter of t1 is equal to the corresponding type
parameter of t2 (Here equality of types a and b means that a :< b
and b :< a)

return #t else return #f.

4.13.17 IsSubtypeLoop

Arguments:
t1: a loop expression
t2: another loop expression

Result:
is-subtype? : #t iff t1 is a subtype of t2

Algorithm: IsSubtypeLoop[t1, t2]

If the iteration variables of t1 and t2 are the same return #t iff the subtype
lists of t1 and t2 are equal (have equal tree structures) and the iteration expres-
sion of t1 is a subtype of the iteration expression of t2. If the iteration variables
are not equal create a new type variable, substitute it into t1 and t2, and do the
same check as above.

4.13.18 IsSubtypeXSignature

Arguments:
t1: a type that is not a signature
t2: a signature type
M : the set (list) of types already visited

Result:
is-subtype? : #t iff t1 is a subtype of t2

24 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

Algorithm: IsSubtypeXSignature[t1, t2, M]

We have t1 :< t2 iff for each specifier s = (proc-name args result attributes)

in the complete specifier list of t2 there exists a procedure (simple, parametrized,
or generic) with name proc-name so that the class of this procedure is a subtype
of the abstract procedure type (:procedure args result attributes) where the
keyword this has been substituted with type t1. We will use this algorithm for
computing the subtyping of parametrized signatures, too.

4.13.19 IsSignatureSubtype

Arguments:
t1: a signature type
t2: a signature type
M : the set (list) of types already visited

Result:
is-subtype? : #t iff t1 is a subtype of t2

Algorithm: IsSignatureSubtype[t1, t2, M]

We have t1 :< t2 iff for each specifier s2 = (proc-name2 args2 result2
attributes2) in the complete specifier list of t2 there exists a specifier s1 =
(proc-name1 args1 result1 attributes1) in the complete specifier list of t1 so that
the procedure names proc-name1 and proc-name2 are equal and (:procedure

args1 result1 attributes1) is a subtype of (:procedure args2 result2 attributes2
).

4.14 Algorithms to Compute Equivalence of Ob-
jects

4.14.1 General

When we refer to Scheme procedures in this section we assume that they behave
as specified in [3]. Note that algorithms EqualPrimitiveValues? and EqualPrimi-
tiveObjects? differ only in their handling of strings.

4.14.2 EqualValues?

Arguments:
obj1 : an object
obj2 : an object
v : the set (list) of object pairs already visited

Result:
#t if obj1 is equal to obj2 , #f otherwise

Algorithm: EqualValues?[obj1 , obj2 , v]

4.14. ALGORITHMS TO COMPUTE EQUIVALENCE OF OBJECTS 25

1. If obj1 and obj2 are the same nonprimitive object return #t.

2. If (obj1 obj2) ∈ v return #t.

3. Let cl1 to be the class of obj1 and cl2 the class of obj2 .

4. If not EqualTypes?[cl1 , cl2 , visited] return #f.

5. If obj1 (and obj2) is a primitive object return EqualPrimitiveValues?[obj1 ,
obj2].

6. Let v′:= (cons (cons obj1 obj2) v) .

7. If obj1 (and obj2) is a pair return EqualPairs?[obj1 , obj2 , v′].

8. If cl1 (and cl2) is a type return EqualTypes?[obj1 , obj2 , v′].

9. If cl1 = (:value-vector t) or cl1 = (:mutable-value-vector t) for
some type t return EqualVectors?[obj1 , obj2 , v′].

10. If cl1 (and cl2) is equal by value return EqualByValue?[obj1 , obj2 , v′].

11. Otherwise return #f.

4.14.3 EqualContents?

Arguments:
obj1 : an object
obj2 : an object
v : the set (list) of object pairs already visited

Result:
#t if the contents of obj1 are equal to the contents of obj2 , #f otherwise

Algorithm: EqualContents?[obj1 , obj2 , v]

1. If obj1 and obj2 are the same nonprimitive object return #t.

2. If (obj1 obj2) ∈ v return #t.

3. Let cl1 to be the class of obj1 and cl2 the class of obj2 .

4. If not EqualTypes?[cl1 , cl2 , visited] return #f.

5. If obj1 (and obj2) is a primitive object return EqualPrimitiveValues?[obj1 ,
obj2].

6. Let v′:= (cons (cons obj1 obj2) v) .

7. If obj1 (and obj2) is a pair return EqualPairContents?[obj1 , obj2 , v′].

8. If cl1 (and cl2) is a type return EqualTypes?[obj1 , obj2 , v′].

9. If cl1 (and cl2) is a general vector class return EqualVectorContents?[obj1 ,
obj2 , v′].

10. Otherwise return EqualFields?[obj1 , obj2 , v′].

26 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

4.14.4 EqualObjects?

Arguments:
obj1 : an object
obj2 : an object

Result:
#t if obj1 and obj2 are the same object, #f otherwise

Algorithm: EqualObjects?[obj1 , obj2]

1. If obj1 is a primitive object

(a) Let cl1 be the class of obj1 and cl2 the class of obj2 .

(b) If EqualTypes?[cl1 , cl2 , ()]

i. return EqualPrimitiveObjects?[obj1 , obj2]

else

i. return #f

else

(a) If obj1 and obj2 are the same nonprimitive object return #t else
return #f.

4.14.5 EqualTypes?

Arguments:
t1 : a type
t2 : a type
v : the set (list) of type pairs already visited

Result:
#t if types t1 and t2 are equal, #f otherwise

Algorithm: EqualTypes?[t1 , t2 , v]

1. If t1 and t2 are the same nonprimitive object return #t.

2. If (t1 t2) ∈ v return #t.

3. Let v′:= (cons (cons t1 t2) v) .

4. If t1 and t2 are pair classes return

EqualTypes?[t1[1], t2[1], v′] ∧ EqualTypes?[t1[2], t2[2], v′].

5. If t1 or t2 is a pair class return #f.

6. If t1 is a general vector class then

4.14. ALGORITHMS TO COMPUTE EQUIVALENCE OF OBJECTS 27

(a) If the classes of t1 and t2 are not the same nonprimitive object return
#f.

(b) Let u1 be the component type of t1 and u2 the component type of
t2 .

(c) Return EqualTypes?[u1 , u2 , v′].

7. If t1 and t2 are classes

(a) If t1 and t2 are instances of a parametrized class return the value of
ParamClassInstEqual[t1, t2, ()]

(b) If t1 or t2 is an instance of a parametrized class return #f.

(c) If t1 and t2 are the same nonprimitive object return #t else return
#f.

8. If t1 or t2 is a class return #f.

9. Otherwise return t1 :< t2 ∧ t2 :< t1 .

4.14.6 EqualByValue?

Arguments:
obj1 : an object
obj2 : an object
v : the set (list) of object pairs already visited

Result:
equal? : <boolean>

Algorithm: EqualByValue?[obj1 , obj2 , v]

Note: We assume that the classes of obj1 and obj2 are equal in the sense of
EqualTypes?.

1. Let cl be the class of obj1 (and obj2).

2. Let result := #t .

3. For each field fld in the field list of class cl do

(a) Let f1 := the value of the field fld in object obj1 and f2 := the value
of the field fld in object obj2 .

(b) If not EqualValues?[f1 , f2 , v] set result := #f and break the loop.

4. Return result .

4.14.7 EqualFields?

Arguments:
obj1 : an object
obj2 : an object
v : the set (list) of object pairs already visited

28 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

Result:
equal? : <boolean>

Algorithm: EqualFields?[obj1 , obj2 , v]

Note: We assume that the classes of obj1 and obj2 are equal in the sense of
EqualTypes?.

1. Let cl be the class of obj1 (and obj2).

2. Let result := #t .

3. For each field fld in the field list of class cl do

(a) Let f1 := the value of the field fld in object obj1 and f2 := the value
of the field fld in object obj2 .

(b) If not EqualContents?[f1 , f2 , v] set result := #f and break the loop.

4. Return result .

4.14.8 EqualPairs?

Arguments:
p1 : a pair
p2 : a pair
v : the set (list) of object pairs already visited

Result:
EqualValues?[p1 [1], p2 [1], v] ∧ EqualValues?[p1 [2], p2 [2], v]

4.14.9 EqualPairContents?

Arguments:
p1 : a pair
p2 : a pair
v : the set (list) of object pairs already visited

Result:
EqualContents?[p1 [1], p2 [1], v] ∧ EqualContents?[p1 [2], p2 [2], v]

4.14.10 EqualPrimitiveValues?

Arguments:
obj1 : a primitive value
obj2 : a primitive value

Result:
equal? : <boolean>

Preconditions:
The classes of obj1 and obj2 have to be equal and they have to be a primitive

4.14. ALGORITHMS TO COMPUTE EQUIVALENCE OF OBJECTS 29

class.

Algorithm: EqualPrimitiveValues?[obj1 , obj2]

1. If obj1 is a <boolean> or <symbol> value return the result of Scheme
expression (eq? obj1 obj2)

2. If obj1 is an integer or a real number return the result of Scheme expression
(= obj1 obj2).

3. If obj1 = null return #t.

4. If obj1 is a <eof> value return #t.

5. If obj1 is a <character>, <input-port>, or <output-port> value return
the result of Scheme expression (eqv? obj1 obj2)

6. If obj1 is a <string> value return the result of Scheme expression (string=?

obj1 obj2)

4.14.11 EqualPrimitiveObjects?

Arguments:
obj1 : a primitive value
obj2 : a primitive value

Result:
equal? : <boolean>

Preconditions:
The classes of obj1 and obj2 have to be equal and they have to be a primitive
class.

Algorithm: EqualPrimitiveObjects?[obj1 , obj2]

1. If obj1 is a <boolean> or <symbol> value return the result of Scheme
expression (eq? obj1 obj2)

2. If obj1 is an integer or a real number return the result of Scheme expression
(= obj1 obj2).

3. If obj1 = null return #t.

4. If obj1 is a <eof> value return #t.

5. If obj1 is a <character>, <string>, <input-port>, or <output-port>

value return the result of Scheme expression (eqv? obj1 obj2)

30 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

4.14.12 EqualVectors?

Arguments:
v1 : a general vector
v2 : a general vector
v : the set (list) of object pairs already visited

Result:
#t if the lengths of v1 and v2 are equal and all the elements of v1 and

v2 are equal in the sense of EqualValues?, #f otherwise

4.14.13 EqualVectorContents?

Arguments:
v1 : a general vector
v2 : a general vector
v : the set (list) of object pairs already visited

Result:
#t if the lengths of v1 and v2 are equal and all the elements of v1 and

v2 are equal in the sense of EqualContents?, #f otherwise

4.14. ALGORITHMS TO COMPUTE EQUIVALENCE OF OBJECTS 31

<object>

<class>

<param-class>

:stack

(:stack <integer>)

my-stack

Figure 4.2: Example inheritance hierarchy for parametrized classes.

32 CHAPTER 4. VARIABLES, OBJECTS, AND TYPES

Chapter 5

Procedures

5.1 General

Theme-D has three kinds of procedures: simple procedures, generic procedures,
and parametrized procedures. A procedure is applied with syntax

(proc arg-1 ...arg-n)

where proc is the procedure and arg-1, ..., arg-n are the arguments passed to
proc. It is possible for a procedure to have no arguments. As regards the simple
procedures proc can be any expression that returns a simple procedure. See sec-
tion 6.14.1 in this manual and define-simple-method and define-param-proc

in chapter 3 of the standard library reference for procedure definition syntax.
A procedure is either pure or nonpure. A pure procedure can’t have any side
effects (or should not have in case of force-pure and force-pure-expr). How-
ever, a pure procedure is allowed to raise exceptions. If a procedure is defined
neither pure nor nonpure it is nonpure by default. If a procedure defines a rest
argument an arbitrary number of instances of the rest argument type can be
passed to the procedure at the end of the argument list.

Procedures should only be applied in procedure bodies. In particular, a
defining expression of a toplevel definition must not be a procedure application.
As an exception to this rule applications of the procedure list generated by
quasiquotation are legal toplevel, too.

Every expression in Theme-D is either pure or nonpure. A pure expression
cannot have any side effects (or should not have in case of force-pure and
force-pure-expr). An application of a pure procedure is a pure expression.
Other procedures are nonpure. A procedure may also be declared force-pure,
in which case the procedure may contain nonpure expressions but the Theme-D
compiler and linker handle the procedure as pure. Note that the purity of a
procedure is not necessarily the same as the purity of a procedure application
calling the procedure. If the procedure is pure and some of the subexpressions
of the procedure application is nonpure the procedure application expression
is nonpure. The implementation of a pure procedure may change the internal
variables of the procedure. More formally, it is legal to change mutable variables
defined inside the nearest lexically enclosing pure procedure implementation of

33

34 CHAPTER 5. PROCEDURES

the expression changing the variable. A typical use of this feature is a pure
procedure having loop variables.

A procedure may also be declared to never returning or always returning.
An example of a procedure returning never is raise, which raises an exception.
A procedure returning always may not raise any exceptions and it has to han-
dle any exceptions being generated in it. When a procedure is neither always
returning or never returning we say that it may return.

If a procedure is a method in some generic procedure the procedure may
be declared static. If a method is static it is dispatched statically, i.e. when
the method is selected in compile-time dispatch that method is used instead of
doing runtime dispatch.

A lambda expression or a parametrized lambda expression may be optionally
assigned a name. This name is used for debugging purposes (runtime backtraces)
only. If you define a variable having a lambda expression (or a parametrized
lambda expression) value with a define or let expression the lambda expression
is assigned the name of the variable automatically and you do not have to specify
it in the lambda expression.

5.2 Simple Procedures

Every simple procedure is an instance of some simple procedure class. A simple
procedure class is an instance of the parametrized class :simple-proc. See
subsection 6.5 for the syntax for defining procedure classes. When you define a
procedure the Theme-D compiler and/or linker deduce the procedure class from
the procedure argument list, result type, and purity specifier automatically,
though.

5.3 Generic Procedures

A generic procedure is a collection of simple or parametrized procedures, which
are called methods. When a generic procedure is called and an argument list is
passed to it Theme-D first checks which of the methods of the generic procedure
can be called with the argument list, i.e. the type af the argument list is a
subtype of the method argument list type. Theme-D then finds out which of
the suitable methods is the best match. If a unique best match is not found
an exception is raised. These checks occur generally run-time. The dispatch of
a generic procedure application must succeed statically even though the static
dispatch is allowed to be ambiguous. No two methods of the same generic
procedure may have identical argument list types.

Suppose that a generic procedure has two distinct methods having argument
list types A and B and result types R and S , respectively. If A is a subtype
of B then R has to be a subtype of S . This is called the covariant typing rule.
The covariant typing rule allows Theme-D to deduce a supertype of the result
type of a generic procedure application at compile time.

When a Theme-D program is linked all the generic procedure with same
name will be merged and the methods defined for each of the merged generic
procedures will be put into the new generic procedure.

5.4. PARAMETRIZED PROCEDURES 35

5.4 Parametrized Procedures

A parametrized procedure is a procedure having type parameters. When these
type parameters are assigned type values we get a simple procedure. Note that a
parametrized procedure is not a simple procedure itself. The values of the type
parameters are usually not specified explicitly. Theme-D deduces the values
from the argument types of a parametrized procedure application. This is done
in translation time. If Theme-D is unable to deduce the type parameter values
a translation error is signalled.

5.5 Abstract Procedure Types

Abstract procedure types are instances of metaclass :procedure. An object
whose static type is a abstract procedure type may be any kind of procedure,
i.e. simple, generic, or parametrized procedure, with a proper class.

5.6 Subtyping of Procedure Types

A simple or abstract procedure class A is a subtype of a simple or abstract
procedure class B if and only if

• One of the following is true:

– Objects A and B are abstract procedure types.

– Objects A and B are simple procedure classes.

– Object A is a simple procedure class and B an abstract procedure
type.

• The argument list type of B is a subtype of the argument list type of A
(note the order).

• The result type of A is a subtype of the result type of B .

• Either A and B are both pure, both nonpure, or A is pure and B nonpure.

• Either B may return or the returning attributes of A and B are equal.

See subsections 4.13.9, 4.13.10, 4.13.11, 4.13.12, and 4.13.13 for further in-
formation on procedure type subtyping.

5.7 Argument Type Modifiers and Static Type
Expressions

The type-valued expressions in Theme-D may contain several argument type
modifiers. These modifiers are

splice Adds the arguments of splice into the enclosing type list definition.

rest Specifies the component type for the variable argument list part of the
procedure that is being defined.

36 CHAPTER 5. PROCEDURES

type-loop Assigns the loop variable with the expressions from the list given and
binds the loop expression with each value.

join-tuple-types Concatenates the elements of all component types.

Expression

(:tuple a1 a2 ... (splice (:tuple b1 b2 ...)) c1 c2 ...)

is equivalent to

(:tuple a1 a2 ... b1 b2 ... c1 c2 ...)

Expression type splice is mainly intended to be used with type-loop ex-
pressions.

Expression

(type-loop %itervar values expression)

will iterate type variable %itervar in the type list values. Type variable
%itervar is bound to a value from values and expression expression is eval-
uated with this binding at each iteration. The result value of the type-loop
expression is a type list containing the evaluated expressions. A type vari-
able whose value is a type list shall be accepted as the argument list type for
:procedure.

Example:

(define-param-proc map (%arglist %return-type)

(prim-proc map

((:procedure ((splice %arglist)) %return-type pure)

(splice (type-loop %iter %arglist (:uniform-list %iter))))

(:uniform-list %return-type)

pure))

When P is a procedure with declared argument types a1, ..., an the argu-
ment type list descriptor of P is defined to be (a1 ...an).

A static type expression is defined as follows:

• Every constant whose value is a static type expression is a static type
expression.

• Every constant whose value is a type is a static type expression.

• Every instantiation of a parametrized type is a static type expression. The
type parameters have to be static type expressions.

• A :tuple expression is a static type expression. The type parameters
have to be static type expressions.

• Every valid application of an argument type modifier is a static type ex-
pression.

5.8. ALGORITHMTODEDUCE THE VALUES OF ARGUMENTVARIABLES37

• Every type variable is a static type expression.

5.8 Algorithm to Deduce the Values of Argu-
ment Variables

5.8.1 TranslateArguments

This algorithm deduces the values of procedure argument variables from the
arguments in procedure application. When l is a list we define N(l) to be the
length of the list l.

Arguments:
a1 ... an : argument descriptors
v1 ... vm : argument values in the procedure application

Result:
w1 ... wn : values assigned to each argument variable

Algorithm: TranslateArguments[a1, ..., an, v1, ..., vm]

1. If n = 0 ∧m 6= 0

2. then raise error

3. else

(a) c := (v1 ...vm)

(b) r := ()

(c) For i = 1, . . . , n

i. t := TranslateArgument[ai,c]

ii. r := Concatenation of r and t [1]

iii. c := t [2]

(d) Return r .

5.8.2 TranslateArgument

Arguments:
a : The argument descriptor being handled
c : The application arguments left

Result:
A pair whose first element is the value/list of values to be assigned to

the argument a and the second element a list of the application arguments left
after handling the current argument translation

Algorithm: TranslateArgument[a, c]

If any of the following is true:

38 CHAPTER 5. PROCEDURES

• a is a type

• a is a list of static type expressions

• a is a type join expression

return ((c1)(c2 ...cN(c))). If N(c) = 0 in the case above raise error.
If a = (rest r) return ((c)()).
Suppose that a = (splice s). Now s has to be a list of static type expressions.
Define l := N(s). If N(c) ≥ l return (((c1 ...cl))(cl+1 ...cN(c))).

5.9 Algorithm to Dispatch Generic Procedure
Applications

5.9.1 SelectBestMatch

Arguments:
l = (t1 ...tn) : Call arguments
sj = (sj,1 ...sj,p(j) rj) : Declared method argument lists, j = 1, . . . ,m

Result:
result : Either found, ambiguous, or not found.
methods: The dispatched methods found.

Algorithm: SelectBestMatch[l , s1, ... sm]

1. Deduce the type parameters for all the parametrized methods. Reject all
the methods for which all type parameters could not be deduced.

2. Set v to a vector of m elements, each of which equal to #t.

3. Set v [i] := #f iff ¬ l :< si .

4. For each i = 1, . . . , n

(a) Define

a(j, i) :=

{
sj,i; i ≤ p(j)
rj ; i > p(j)

and set w a vector of m elements with value #f.

(b) For each j = 1, . . . ,m: if v[j] = #t and a(j, i) :< ti set w[j] := #t.

(c) If w[j0] = #t for some j0 ∈ {1, . . . ,m} then set v := w else do
SelectNearestMethod[i , v , l , s1, ..., sm]

(d) If there is one or zero j for which v[j] = #t break the loop.

5. If v[j] = #t for exactly one j ∈ {1, . . . ,m} then the result of the algorithm
is “found” and the result method is method number j. If v[j] = #t for more
than one j ∈ {1, . . . ,m} the result of the algorithm is “ambiguous” and
the result methods are all the methods for which v[j] = #t. If v[j] = #f

for all j ∈ {1, . . . ,m} the result of the algorithm in “not found”.

5.10. ALGORITHMTODISPATCH PARAMETRIZED PROCEDURE APPLICATIONS39

5.9.2 SelectNearestMethods

Arguments:
i : Index to the argument list
v : Boolean values marking the methods included in computation
l = (t1 ...tn) : Same as in SelectBestMatch
sj = (sj,1 ...sj,p(j) rj) : Same as in SelectBestMatch

Result:
v : Boolean values marking the methods included in computation

Algorithm: SelectNearestMethods[i , v , l , s1, ..., sm]

Define a(j, i) as in algorithm SelectBestMethod.

For each j = 1, . . . ,m
For each k = 1, . . . ,m

If j 6= k, v[j] ∧ v[k], and a(j, i) :< a(k, i) set v[k] := #f .

5.10 Algorithm to Dispatch Parametrized Pro-
cedure Applications

This algorithm computes only suggestions for the type parameter values of a
given parametrized procedure. We will bound the type variables in the type of
the parametrized procedure with the suggestions. Then we will check that the
type of the application argument list is a subtype of the bound parametrized
procedure type.

When we compile an implementation of a parametrized procedure we fix the
type parameters of the procedure so that their values are not deduced and the
other type variables may be represented in terms of them.

5.10.1 DeduceArgumentTypes

Arguments:
src: A static type expression
target : A static type expression
T : An object containing type variable bindings
F : A list of fixed type variables

Result:
all-found? : #t iff values were found for all the nonfixed type variables in src
and target

Algorithm: DeduceArgumentTypes[src, target , T , F]

1. Set state := 2 , old-count-source := 0 , old-count-target := 0 , cur-src
:= src , cur-target := target , and dir-forward? := #t .

2. Until state ≤ 0 do

40 CHAPTER 5. PROCEDURES

(a) If dir-forward?

i. If state > 0

A. Apply algorithm DeduceStepForward[cur-src, cur-target , T ,
F , old-count-target , state] and store the result into res.

B. Set state := res[1] and old-count-target := res[2] .

C. Bind all the bindings of T in expression target and store the
result into cur-target .

D. Bind all the bindings of T in expression src and store the
result into cur-src, else

i. If state > 0

A. Apply algorithm DeduceStepForward[cur-src, cur-target , T ,
F , old-count-src, state] and store the result into res.

B. Set state := res[1] and old-count-src := res[2] .

C. Bind all the bindings of T in expression src and store the
result into cur-src.

D. Bind all the bindings of T in expression target and store the
result into cur-target .

(b) Set dir-forward? to ¬dir-forward?.

3. Return #t iff state = −1.

5.10.2 DeduceStepForward

Arguments:
src: A static type expression
target : A static type expression
T : An object containing type variable bindings
F : A list of fixed type variables
old-count : The number of type variables already deduced
old-state: The old state of the algorithm

Result:
new-state: The new state of the algorithm
new-count : The number of type variables deduced

Algorithm: DeduceStepForward[src, target , T , F , old-count , old-state]

1. Apply algorithm DeduceTypeParams[src, target , T , F , ()].

2. Set new-count := the number of bindings in T .

3. If all the type variables in src and target were deduced return (-1 new-
count).

4. If old-count = new-count let s := old-state - 1 and return (s new-count
).

5. Otherwise return (2 new-count).

5.10. ALGORITHMTODISPATCH PARAMETRIZED PROCEDURE APPLICATIONS41

5.10.3 DeduceStepBackward

Arguments:
src: A static type expression
target : A static type expression
T : An object containing type variable bindings
F : A list of fixed type variables
old-count : The number of type variables already deduced
old-state: The old state of the algorithm

Result:
new-state: The new state of the algorithm
new-count : The number of type variables deduced

Algorithm: DeduceStepBackward[src, target , T , F , old-count , old-state]

1. Apply algorithm DeduceTypeParams[target , src, T , F , ()].

2. Set new-count := the number of bindings in T .

3. If all the type variables in src and target were deduced return (-1 new-
count).

4. If old-count = new-count let s := old-state - 1 and return (s new-count
).

5. Otherwise return (2 new-count).

5.10.4 DeduceTypeParams

Arguments:
src: A list of list of static type expressions
dest : A static type expression
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceTypeParams[src, dest , T , F , v]

1. If src is not a (general) pair and dest is a splice expression compute De-
duceTypeParams[(src), c, T , F , v2] where c is the component type of
dest . If the condition above does not hold and src is not a pair return #f

(this may be an error situation).

2. Let x be the head of list src. If pair (x ,dest) is contained in v return.
Otherwise add (x ,dest) into v2 .

3. Set src2 to be the value of PrepareSourceType[src].

42 CHAPTER 5. PROCEDURES

4. If src2 is not a pair or there are not any type variables in dest return.

5. If dest is a type variable compute DeduceSimpleType[src2 , dest , T , F ,
v2] and return.

6. If src and dest are both signatures compute DeduceSgnSgn[src, dest , T ,
F , v2] and return.

7. If dest is a signature and src is not a signature compute DeduceNotS-
gnSgn[src, dest , T , F , v2] and return.

8. If dest is not a signature and src is a signature return.

9. If dest is a pair or a pair class compute DeducePair[src2 , dest , T , F , v2]
and return.

10. If dest is a rest expression compute DeduceRest[src2 , dest , T , F , v2] and
return.

11. If dest is a splice expression compute DeduceSplice[src2 , dest , T , F , v2]
and return.

12. If dest is a type loop expression compute DeduceTypeLoop[src2 , dest , T ,
F , v2] and return.

13. If src2 [1] is a union and dest is not a union compute DeduceUnionX[src2 [1],
dest , T , F , v2] and return.

14. If src2 [1] is not a union and dest is a union compute DeduceXUnion[src2 ,
dest , T , F , v2] and return.

15. If src2 [1] is a union and dest is a union compute DeduceUnionUnion[src2 [1],
dest , T , F , v2] and return.

16. If src2 [1] is a generic procedure class and dest is an abstract procedure
type compute DeduceGenAbst[src2 [1], dest , T , F , v2] . and return.

17. If dest and src2 are parametrized type instances whose type parameters
contain type modifiers return #t if the types and type parameters of these
instances are equal. If only one of dest and src2 is this kind of instance
return #f. Note that type modifiers may be optimized away by the Theme-
D compiler and linker in which case these conditions are not fulfilled.

18. Compute DeduceSubexprs[src2 , dest , T , F , v2] and return.

5.10.5 PrepareSourceType

Arguments:
t : a list of static type expressions

Result:
u : a modified list of static type expressions

Algorithm: PrepareSourceType[t]

5.10. ALGORITHMTODISPATCH PARAMETRIZED PROCEDURE APPLICATIONS43

Let t = (t1, . . . , tn). Define

r :=

{
c; if t1 is a splice expression
t1; otherwise

where c is the component type of t1. Return (r, t2, . . . , tn).

5.10.6 DeduceSubexprs

Arguments:
src: A list of list of static type expressions
dest : A static type expression
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceSubexprs[src, dest , T , F , v]

1. Set comp := The component list of the head of src .

2. Set src-new := A list whose head is comp and whose tail is the tail of src
.

3. Compute DeduceTypeParams[src-new , subexprs2 , T , F , v].

5.10.7 DeduceSimpleType

Arguments:
src: A list of list of static type expressions
dest : A variable reference to a type
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceSimpleType[src, dest , T , F , v]

1. Let var be the variable which dest refers to.

2. If src is a list, var is a type variable, and var is not already contained in
T then add the binding of var with the head of src into T .

3. If the formerly deduced type variables contain variable var substitute the
new binding into them.

4. If the new deduced value contains formerly deduced type variables substi-
tute them into the new value.

44 CHAPTER 5. PROCEDURES

5.10.8 DeducePair

Arguments:
src: A list of list of static type expressions
dest : A pair or a pair class
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeducePair[src, dest , T , F , v]

1. Let src2 := the head of the pair src

2. Let u := the head of the pair dest and compute DeduceTypeParams[src2 ,
u, T , F , v].

3. Let r := (r0) where r0 := the tail of the pair src2 and s := the tail
of the pair dest and compute DeduceTypeParams[r , s, T , F , v].

5.10.9 DeduceRest

Arguments:
src: A list of list of static type expressions
dest : A rest expression
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceRest[src, dest , T , F , v]

Let t be the component type of the rest expression dest . Compute Deduce-
TypeParams[src, t , T , F , v] .

5.10.10 DeduceSplice

Arguments:
src: A list of list of static type expressions
dest : A splice expression
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceSplice[src, dest , T , F , v]

5.10. ALGORITHMTODISPATCH PARAMETRIZED PROCEDURE APPLICATIONS45

Let t be the component type of the rest expression dest . Let l be the single
element list containing src. Compute DeduceTypeParams[l , t , T , F , v] .

5.10.11 DeduceTypeLoop

Arguments:
src: A list of list of static type expressions
dest : A type loop expression
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceTypeLoop[src, dest , T , F , v]

Let iter-var be the iteration variable of dest , iter-expr the iteration expres-
sion of dest , and subtype-list the subtype list of dest .

1. Let source-list be the first element of src. If source-list is not a list raise
error else we have source-list = (t1 ...tn).

2. Let guessed-items to be the empty list.

3. If source-list is a type loop and subtype-list is a type variable then if

• iter-expr and the iteration expression of source-list are equal

• T does not contain a binding for subtype-list

• The subtype list of source-list does not contain free type variables
other than those contained in F

bind type variable subtype-list with the subtype list of source-list in T .

4. Else if source-list is a uniform list type and subtype-list is a type variable
then

(a) Let U be a copy of T sharing the same contents.

(b) Let new-src be a list containing only the component type of source-
list .

(c) Call DeduceTypeParams[new-src, iter-expr , U , F , v] .

(d) If U contains a binding of type variable iter-var then bind subtype-
list in T with a uniform list type having the binding of iter-var as
the component type.

5. Else if source-list is not empty then

(a) For i = 1, . . . , n

i. Let U be a copy of T sharing the same contents.

ii. Call DeduceTypeParams[ti, iter-expr , U , F , v] .

iii. If U contains a binding for type variable iter-var add the binding
into the list guessed-items.

46 CHAPTER 5. PROCEDURES

(b) If guessed-items contains #f return.

(c) If subtype-list is a type variable u and u is not already contained in
T then

i. Let b be the list consisting of the tails of the pairs in guessed-
items with the same order.

ii. Add a binding of u with b into T .

(d) Denote the elements of guessed-items with gj , j = 1, . . . ,m. For
j = 1, . . . ,m

i. Construct list bindings by appending the contents of T and gj .

ii. Create list r by applying bindings in expression iter-expr .

iii. Set hj := r .

(e) Compute DeduceTypeParams[src, h, T , F , v] .

6. If subtype-list is a variable reference to a type variable and T does not
contain a binding of subtype-list add a binding of subtype-list with the
empty list into T .

5.10.12 DeduceUnionX

Arguments:
src: A union expression
dest : A static type expression
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceUnionX[src, dest , T , F , v]

Let u1, ..., un be the member types of union src. For i = 1, . . . , n compute
DeduceTypeParams[(ui), dest , T , F , v] .

5.10.13 DeduceXUnion

Arguments:
src: A list of static type expressions
dest : A union expression
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceXUnion[src, dest , T , F , v]

Let u1, ..., un be the member types of union dest . For i = 1, . . . , n call
DeduceTypeParams[src, ui, T , F , v] .

5.10. ALGORITHMTODISPATCH PARAMETRIZED PROCEDURE APPLICATIONS47

5.10.14 DeduceUnionUnion

Arguments:
src: A union expression
dest : A union expression
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceXUnion[src, dest , T , F , v]

Let t1, ..., tm be the member types of union src and u1, ..., un the member
types of union dest . Let p := min{m,n}. For i = 1, . . . , p compute Deduce-
TypeParams[(ti), ui, T , F , v] .

5.10.15 DeduceGenAbst

Arguments:
t1 : A generic procedure class
t2 : An abstract procedure type
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceGenAbst[t1 , t2 , T , F , v]

1. If t1 contains type variables compute DeduceGenAbstArgList[t1 , t2 , T , F ,
v]

2. If t2 contains type variables compute DeduceGenAbstResult[t1 , t2 , T , F ,
v]

5.10.16 DeduceGenAbstResult

Arguments:
t1 : A generic procedure class
a: The target argument list type
r : The target result type
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceGenAbstResult[t1 , a, r , T , F , v]

48 CHAPTER 5. PROCEDURES

1. Let m be the method class list of t1 . Compute result and method with
algorithm SelectBestMatch[a, m].

2. If an unambiguous match was found let b be the result type of m and
apply algorithm DeduceTypeParams[(b), r , T , F , v].

5.10.17 DeduceGenAbstArgList

Arguments:
t1 : A generic procedure class
a: The target argument list type
r : The target result type
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceGenAbstArgList[t1 , a, r , T , F , v]

1. Let m be the method class list of t1 . Compute result and method with
algorithm SelectBestMatch[a, m].

2. If an unambiguous match was found let c be the argument list type of m
and apply algorithm DeduceTypeParams[(c), a, T , F , v].

5.10.18 DeduceNotSgnSgn

Arguments:
src: A static type expressions
dest : A signature
T : An object containing type variable bindings
F : A list of fixed type variables
v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceNotSgnSgn[src, dest , T , F , v]

For each procedure specifier s in dest define p be the type of the correspond-
ing procedure and define q by substituting this by src in s. Apply algorithm
DeduceTypeParams[(p), q , T , F , v].

5.10.19 DeduceSgnSgn

Arguments:
src: A signature
dest : A signature
T : An object containing type variable bindings
F : A list of fixed type variables

5.10. ALGORITHMTODISPATCH PARAMETRIZED PROCEDURE APPLICATIONS49

v : A set (list) of expression pairs visited

No result value.

Algorithm: DeduceSgnSgn[src, dest , T , F , v]

For each procedure specifier p in signature src
for each procedure specifier q in signature dest

If the names of p and q are equal apply algorithm
DeduceTypeParams[(p), q , T , F , v].

50 CHAPTER 5. PROCEDURES

Chapter 6

Expressions

6.1 General

Note that many of the forms and control structures in Theme-D are defined by
the standard library (module core-forms). See the standard library reference
for these. If the type of a syntax variable (printed in italic) is not defined it is
assumed to be an expression. If we make an union of a set of types and some
of these types is <none> the union is also <none>. Syntax element “identifier”
means a legal Theme-D identifier. Syntax element “null” means an empty list,
denoted by either null or ().

6.2 Macros

Theme-D has a hygienic and lexically scoped macro system similar to Scheme
macros. The keywords define-syntax, let-syntax, letrec-syntax, and syntax-case

are defined for the macro system. The macro system is partly implemented by
the Theme-D standard library. Some of the Theme-D control structures are
implemented by macros in the standard library. Macros cannot be declared.
When you want to export macros you have to put them into the interface file of
a module. See chapter 5 in Theme-D Standard Library Reference and Scheme
standard documentation [3] for more information.

The macro transformers must expand to a special macro transformer lan-
guage resembling Scheme. The value returned by a macro transformer has to
be a Theme-D expression.

6.2.1 Forms in the Macro Transformer Language

The following forms are built-in:

• $lambda

• $let

• if-object

• if

51

52 CHAPTER 6. EXPRESSIONS

• begin

• set!

• quote

The following forms are implemented by the Theme-D standard library:

• $let*

• $letrec

• $letrec*

• $and

• $or

The keywords starting with ’$’ behave like the corresponding keywords in
Scheme. The other keywords behave like the corresponding keywords in Theme-
D.

6.2.2 Procedures in the Macro Transformer Language

These procedures work as the corresponding procedures without the leading ’$’
in Scheme, see [3]:

• $cons

• $car

• $cdr

• $pair?

• $null?

• $list?

• $list

• $for-all

• $map

• $apply

• $equal?

• $=

• $>=

• $>

• $length

• $append

6.3. PROCEDURE APPLICATION 53

• $+

• $-

• $vector

• $vector->list

• $raise

These procedures are defined by the SRFI-72 implementation (without the
leading ’$’):

• $dotted-length

• $dotted-last

• $dotted-butlast

• $identifier?

• $free-identifier=?

• $syntax-rename

• $invalid-form

• $map-while

• $syntax-violation

• $generate-temporaries

• $make-variable-transformer

• $undefined

6.3 Procedure Application

Syntax:

(procedure arg-1 ...arg-n)

The procedure procedure is called with arguments arg-1, ..., arg-n. Note
that it is legal to have an expression returning a simple procedure as the pro-
cedure to be called. It is an error if the type of any argument is <none>. When
a procedure is called it is always checked that the types of the arguments are
correct to that procedure. This check occurs either translation time or run time.

54 CHAPTER 6. EXPRESSIONS

6.4 Instantiation of a Parametrized Type

Let A be a parametrized class or a parametrized logical type. Let a1, ..., an

be type expressions and t1, ..., tm be the translated argument list generated by
them. Then the value of expression (A a1 ...an) is an instance of parametrized
type A with type parameter values t1, ..., tm. Two distinct instantiations of
a parametrized class with same type parameter values shall refer to the same
class.

6.5 Instantiation of Procedure Classes

Abstract and simple procedure classes are instantiated with the following syntax:

(proc-metaclass argument-list result-type attribute-list)

proc-metaclass ::=:procedure | :simple-proc
argument-list ::=([arg1 ...argn])
attribute-list ::=(attribute ...)
attribute ::=pure | nonpure
| always-returns | may-return| never-returns | static

This syntax creates an abstract or simple procedure class. Expressions arg1,
..., argn define the argument types. These expressions have to be static type
expressions.

Parametrized procedure classes are instantiated with the following syntax:

(:param-proc type-param-list argument-list result-type attribute-list)

type-param-list ::=([tparam1 ...tparamm])
tparamk ::=identifier
argument-list ::=([arg1 ...argn])
attribute-list ::=(attribute ...)
attribute ::=pure | nonpure
| always-returns | may-return| never-returns | static

Generic procedure classes cannot be instantiated explicitly for the moment.

6.6 Quotation

Quotation and quasiquotation work as in Scheme. Expression (quote expr)

can be written ’expr . Expression (quasiquote expr) can be written
‘expr .

6.7. IMPLICIT DECLARATION OF RECURSIVE DEFINITIONS 55

6.7 Implicit Declaration of Recursive Definitions

Keywords define-simple-proc, define-param-proc, define-simple-method,
define-param-method, define-class, define-param-class, and define-param-
logical-type declare the variables they define implicitly so that you do not
have to declare them explicitly for recursion. However, mutually recursive def-
initions require declarations. Keywords define-simple-proc, define-param-
proc, define-simple-method, and define-param-method are defined in the
core library.

6.8 Module Forms

6.8.1 define-proper-program

Syntax:

(define-proper-program program-name
[module-expression] ...
[expression] ...)

program-name ::=module-name
module-expression ::=(module-keyword module-name ...)
module-name ::=identifier | (identifier ...)
module-keyword ::=import | use | prelink-body

A proper program with name program-name is defined. See chapter 3.

6.8.2 define-script

Syntax:

(define-script program-name
[module-expression] ...
[expression] ...)

program-name ::=module-name
module-expression ::=(module-keyword module-name ...)
module-name ::=identifier | (identifier ...)
module-keyword ::=import | use | prelink-body

A script with name program-name is defined. See chapter 3.

6.8.3 define-interface

Syntax:

56 CHAPTER 6. EXPRESSIONS

(define-interface mod-name
[module-expression] ...
[interface-expression] ...)

mod-name ::=module-name
module-expression ::=(module-keyword module-name ...)
module-name ::=identifier | (identifier ...)
module-keyword ::=import | import-and-reexport | use
interface-expression ::=declaration | definition

An interface with name mod-name is defined. The mod-name may be either
a single identifier or a list of identifiers. See chapter 3.

6.8.4 define-body

Syntax:

(define-body mod-name
[module-expression]
[expression] ...)

mod-name ::=module-name
module-expression ::=(module-keyword module-name ...)
module-name ::=identifier | (identifier ...)
module-keyword ::=import | use | prelink-body

A body with name mod-name is defined. The mod-name may be either a
single identifier or a list of identifiers. See chapter 3.

6.8.5 import

Syntax:

(import module-name ...)

module-name ::=identifier | (identifier ...)

An interface is imported. See chapter 3 and subsections 6.8.1, 6.8.2, 6.8.3,
and 6.8.4.

6.8.6 import-and-reexport

Syntax:

6.8. MODULE FORMS 57

(import-and-reexport module-name ...)

module-name ::=identifier | (identifier ...)

An interface is imported and reexported. See chapter 3 and subsections
6.8.3, and 6.8.4.

6.8.7 use

Syntax:

(use module-name ...)

module-name ::=identifier | (identifier ...)

An interface can be accessed but its contents are not imported into the
toplevel namespace. See chapter 3 and subsections 6.8.1, 6.8.2, 6.8.3, and 6.8.4.

6.8.8 @

Syntax:

(@ module-name variable)

module-name ::=identifier | (identifier ...)
variable ::=identifier

Access a variable in the specified module. See chapter 3 and subsections
6.8.1, 6.8.2, 6.8.3, and 6.8.4.

6.8.9 reexport

Syntax:

(reexport identifier)

A variable is reexported. This expression type can occur only inside an
interface. See chapter 3 and subsection 6.8.3.

6.8.10 prevent-stripping

Syntax:

58 CHAPTER 6. EXPRESSIONS

(prevent-stripping identifier)

This expression prevents stripping off a procedure or a class from the linker
output even though it is not detected in the coverage analysis. This should be
necessary only with the foreign function interface.

6.8.11 prelink-body

Syntax:

(prelink-body module-name ...)

module-name ::=identifier | (identifier ...)

The bodies for the specified modules are linked before the unit where the
prelink-body statement is given. Consequently the procedures defined in the
prelinked bodies may be called toplevel in the unit. Keyword prelink-body
may not be used in interfaces. See chapter 3 and subsections 6.8.1, 6.8.2, 6.8.3,
and 6.8.4.

6.9 Toplevel Definitions

6.9.1 define

Syntax:

(define variable-name [type] value)

variable-name ::=identifier

A constant with name variable-name and value value is defined. Expression
type has to be a static type expression if it is present. If type is specified and
value is not an instance of type an error is signalled.

6.9.2 define-class

Syntax:

(define-class class-name superclass inheritable immutable eq-by-value ctr-
access zero-value field-list)

class-name ::=identifier
inheritable ::=boolean
immutable ::=boolean

6.9. TOPLEVEL DEFINITIONS 59

eq-by-value ::=boolean
ctr-access ::=access-specifier
field-list ::=([field-specifier] ...)
field-specifier ::=(field-name field-type read-access write-access [field-initial-value]
)

field-name ::=identifier
read-access ::=access-specifier
write-access ::=access-specifier
access-specifier ::=public | module | hidden

A new class is defined. Parameter superclass has to be a static type ex-
pression whose value is a class. Parameters field-type have to be static type
expressions.

6.9.3 define-generic-proc

Syntax:

(define-generic-proc generic-name)

generic-name ::=identifier

This expression defines a generic procedure with the name given. Note that
define-simple-method and define-param-method define a generic proce-
dure implicitly if it has not been already defined.

6.9.4 define-goops-class

Syntax:

(define-goops-class name target-name superclass inheritable? immutable?
equal-by-value? checked? zero-var equal-pred equal-contents-pred)

name ::=identifier
target-name ::=identifier
inheritable? ::=boolean
immutable? ::=boolean
equal-by-value? ::=boolean
checked? ::=boolean
zero-var ::=identifier | null
equal-pred ::=identifier | null
equal-contents-pred ::=identifier | null

Keyword define-goops-class defines a custom GOOPS class existing in
the target environment. A custom GOOPS class may only inherit (in Theme-
D) from another custom GOOPS class or from <object>. Flags inheritable? ,

60 CHAPTER 6. EXPRESSIONS

immutable? and equal-by-value? specify whether the class is inheritable, im-
mutable or equal by value, respectively. If checked? is #t the types of the
result values of the predicates are checked runtime. If zero-var is not null it
defines a zero value (variable) for the class. Arguments equal-pred and equal-
contents-pred determine the Scheme predicates that are used to compare values
of this class in predicates equal? and equal-contents?. When procedure
equal-objects? is used with GOOPS objects the comparison is performed by
the target Scheme procedure eqv?. If equal-pred or equal-contents-pred is null
the default value is used. The default value is eqv? for equal-pred and equal?

for equal-contents-pred . When the equality predicates are called both of the
arguments belong always to the declared class. If the Scheme predicate eqv?

returns #t for some arguments predicate equal-pred must also return #t for
these arguments. If equal-pred returns #t for some arguments predicate equal-
contents-pred must also return #t for these arguments. If two objects belonging
to the declared class are equal by Scheme predicate eq? both equal-pred and
equal-contents-pred have to return #t for these objects.

6.9.5 define-mutable

Syntax:

(define-mutable variable-name type value)

variable-name ::=identifier

A mutable variable with name variable-name, type type and initial value
value is defined. Expression type has to be a static type expression. If value is
not an instance of type an error is signalled.

6.9.6 define-volatile

Syntax:

(define-volatile variable-name type value)

variable-name ::=identifier

A volatile variable with name variable-name, type type and initial value
value is defined. Expression type has to be a static type expression. If value is
not an instance of type an error is signalled.

6.9.7 define-param-logical-type

Syntax:

(define-param-logical-type param-ltype-name type-parameter-list
type-expression)

6.9. TOPLEVEL DEFINITIONS 61

param-ltype-name ::=identifier

Expression type-expression has to be a static type expression. When the
instances of the parametrized logical type are created the type variables in type-
parameter-list are bound to the values given for them and these bindings are
applied for type-expression.

6.9.8 define-param-class

Syntax:

(define-param-class param-class-name type-parameter-list superclass inher-
itable immutable eq-by-value ctr-access zero-value field-list)

type-parameter-list ::=(type-param1 ...type-paramn)

type-paramk ::=identifier

The syntax of type-parameter-list is the same as in define-param-logical-
type. The syntax of the last seven parameters is similar to their syntax in
define-class. Parameter superclass has to be a static type expression whose
value is a class. Parameters field-type have to be static type expressions. Param-
eters superclass, inheritable, immutable, eq-by-value, ctr-access, and the field list
define the properties of the instances of the parametrized class being defined.
When the instances of the parametrized class are created the type variables in
type-parameter-list are bound to the values given for them and these bindings
are applied for field-list and superclass.

6.9.9 define-param-proc-alt

Syntax:

(define-param-proc-alt proc-name (type1 ... typen) proc-expression)

proc-name ::=identifier
typek ::=identifier

This is an alternate way to define a parametrized procedure. Expression
proc-expression has to be a lambda expression.

6.9.10 define-param-signature

Syntax:

(define-param-signature signature-name type-param-list super proc-specifier
...)

62 CHAPTER 6. EXPRESSIONS

signature-name ::=identifier
type-param-list ::=([identifier ...])
super ::=identifier | null
proc-specifier ::=(procedure-name arg-type-list result-type attribute-list)

procedure-name ::=identifier
arg-type-list ::=([arg-type ...])
attribute-list ::=(attribute ...)
attribute ::=pure | nonpure
| always-returns | may-return| never-returns | static

Object super is the signature from which the parametrized signature in-
herits. In case a signature does not inherit anything super is set to null. A
complete specifier list of a parametrized signature is obtained by concatenating
the complete specifier list of the super signature with the specifier list of the
parametrized signature being defined.

Expressions proc-specifier specify the procedures that all instances of the
parametrized signature have to implement. Keyword this is used to refer to an
instance of the parametrized signature itself in the procedure specifiers.

When the type variables of a parametrized signature are substituted with
types we get an instance of the parametrized signature. This instance is a
(ordinary) signature.

6.9.11 define-prim-class

Syntax:

(define-prim-class name immutable? equal-by-value? checked? zero-var
member-pred equal-pred equal-objects-pred equal-contents-pred)

name ::=identifier
immutable? ::=boolean
equal-by-value? ::=boolean
checked? ::=boolean
zero-var ::=identifier | null
member-pred ::=identifier | null
equal-pred ::=identifier | null
equal-objects-pred ::=identifier | null
equal-contents-pred ::=identifier | null

Keyword define-prim-class defines a custom primitive class existing in the
target environment. A custom primitive class cannot be inherited and it is an
immediate descendant of <object>. Procedure member-pred determines if an
object belongs to the class. Flags immutable? and equal-by-value? specify
whether the class is immutable or equal by value, respectively. If checked? is #t
the types of the result values of the predicates are checked runtime. If zero-var
is not null it defines a zero value (variable) for the class. Arguments equal-
pred , equal-objects-pred , and equal-contents-pred determine the target Scheme

6.9. TOPLEVEL DEFINITIONS 63

procedures that are used to compare the values of this class in predicates equal?,
equal-objects?, and equal-contents?. If any of these arguments is null the
default value is used. The default value is eqv? for equal? and equal-objects?

and equal? for equal-contents?. When the equality predicates are called
both of the arguments belong always to the declared class. If equal-objects-pred
returns #t for some arguments predicate equal-pred must also return #t for
these arguments. If equal-pred returns #t for some arguments predicate equal-
contents-pred must also return #t for these arguments. If two objects belonging
to the declared class are equal by Scheme predicate eq? all the three predicates
have to return #t for these objects.

6.9.12 define-signature

Syntax:

(define-signature signature-name super proc-specifier ...)

signature-name ::=identifier super ::=identifier | null
proc-specifier ::=(procedure-name arg-type-list result-type attribute-list)

procedure-name ::=identifier
arg-type-list ::=([arg-type ...])
attribute-list ::=(attribute ...)
attribute ::=pure | nonpure
| always-returns | may-return| never-returns | static

Object super is the signature from which the signature inherits. In case a
signature does not inherit anything super is set to null. A complete specifier
list of a signature is obtained by concatenating the complete specifier list of the
super signature with the specifier list of the signature being defined.

Expressions proc-specifier specify the procedures that all instances of the
signature have to implement. Keyword this is used to refer to the signature
itself in the procedure specifiers.

6.9.13 add-method

Syntax:

(add-method generic-name method)

generic-name ::=identifier

Keyword define-simple-method adds method into the generic procedure
generic-name. Procedure method has to be a simple procedure or a parametrized
procedure.

64 CHAPTER 6. EXPRESSIONS

6.10 Declarations

6.10.1 declare

Syntax:

(declare variable-name class)

variable-name ::=identifier

A declare expression declares a variable with given class without defining
it. It is possible to use the variable after declaration although the use may
be restricted somehow. E.g. it is not possible to use a declared class before
defining it as a superclass of another class. Note that declare needs always a
class and it does not accept logical types. Expression class has to be a static
type expression whose value is a class. It is possible to redeclare the variable
several times but then the new declared class has to be a subclass of the old
class and the new class must have the same number of fields as the old class.
The same typing rule is applied also when a declared variable is defined (the
defined type is the new class). A declared variable has to be defined in the same
module where the declaration is.

6.10.2 declare-method

Syntax:

(declare-method generic-name procedure-class)

generic-name ::=identifier

Keyword declare-method declares a method. A declaration of the method
is added into the generic procedure generic-name. The procedure-class has to
be either a simple or a parametrized procedure class. A declared method has
to be defined either

• in the same translation unit where the declaration is or

• in the body of the interface if the declaration is in an interface.

6.10.3 declare-mutable

Syntax:

(declare-mutable variable-name type)

variable-name ::=identifier

6.11. CONTROL STRUCTURES 65

Keyword declare-mutable declares a mutable variable. The type has to
be the type of the variable variable-name. Note that a variable declared with
declare-mutable cannot be defined as volatile.

6.10.4 declare-volatile

Syntax:

(declare-volatile variable-name type)

variable-name ::=identifier

Keyword declare-volatile declares a volatile variable. The type has to be
the type of the variable variable-name.

6.11 Control Structures

6.11.1 if

Syntax:

(if condition then-expression [else-expression])

The type of condition has to be <boolean>. If else-expression is defined
the type of the if expression is the union of the types of then-expression and
else-expression. Otherwise the type of the if expression is <none>.

If condition is #t then-expression is evaluated. If condition is #f and else-
expression is defined else-expression is evaluated. If the result type of the if ex-
pression is not <none> the value returned from then-expression or else-expression
is returned from the if expression. Note that then-expression or else-expression
are not necessarily evaluated at all.

6.11.2 if-object

Syntax:

(if-object condition then-expression [else-expression])

The condition can be any object. If else-expression is defined the type of
the if-object expression is the union of the types of then-expression and else-
expression. Otherwise the type of the if-object expression is <none>.

If condition is not #f then-expression is evaluated. If condition is #f and
else-expression is defined else-expression is evaluated. If the result type of the
if-object expression is not <none> the value returned from then-expression
or else-expression is returned from the if-object expression. Note that then-
expression or else-expression are not necessarily evaluated at all.

66 CHAPTER 6. EXPRESSIONS

6.11.3 until

Syntax:

(until (condition [result-expression]) body-expression1 ...body-expressionn)

The type of condition has to be <boolean>. At the beginning of each it-
eration condition is evaluated. If it returns #t the iteration is stopped and
the value of result-expression is returned as the result of the until expression.
Otherwise the body expressions are evaluated in order and the next iteration is
started from the beginning. If result-type is not specified the type of the until
expression is <none>.

6.11.4 begin

Syntax:

(begin expr1 ...exprn)

The type of the begin expression is the type of the last component expression
exprn. All the component expressions exprk are evaluated in order. If the result
type of the last component expression is not <none> its value is returned as the
value of the begin expression.

6.11.5 set!

Syntax:

(set! variable-name value)

variable-name ::=identifier

The value of the variable variable-name is set to value. Variable variable-
name has to be defined and it has to be mutable. The type of value has to be
a subtype of the type of variable variable-name. If these rules are violated a
translation error (usually a compilation error) is signalled.

6.11.6 guard-general

Syntax:

(guard-general variable-name exception-handler body)

variable-name ::=identifier

6.11. CONTROL STRUCTURES 67

Form guard-general evaluates the expression body . If an exception is raised
the variable variable-name is bound to the exception object and expression
exception-handler is evaluated and its value is the value of the guard-general
expression. If no exception is raised during the evaluation of the body its value is
returned as the value of the guard-general expression. Note that the exception
handler may itself raise exceptions in which case the surrounding exception
handler evaluates them. See section 2 in the standard library reference for more
information on exceptions.

6.11.7 execute-with-current-continuation (exec/cc)

(execute-with-current-continuation | exec/cc jump-proc jump-type body)

jump-proc ::=identifier

This is a frontend for the built-in procedures

• call-with-current-continuation

• call-with-current-continuation-nonpure

• call-with-current-continuation-without-result

See sections 7.2.3, 7.2.4, and 7.2.5. The body is an expression that may invoke
procedure jump-proc. This kind of invocation sets the current continuation to
the continuation of the exec/cc expression. Type jump-type is the type of the
object that jump-proc passes into the continuation. Keyword exec/cc is defined
as an alias to execute-with-current-continuation.

6.11.8 generic-proc-dispatch

Syntax:

(generic-proc-dispatch gen-proc-name (arg-type1 ... arg-typen)
attribute-list)

gen-proc-name ::=identifier
attribute-list ::=(attribute ...)
attribute ::=pure | nonpure
| always-returns | may-return| never-returns | static

Keyword generic-proc-dispatch returns a simple procedure that dispatches
a call to generic procedure gen-proc-name with argument type arg-typek. Ex-
pressions arg-typek have to be static type expressions. The dispatched method
must be compatible with the given attributes and its result type must not be
<none>. Although a value of a generic-proc-dispatch expression is a simple

68 CHAPTER 6. EXPRESSIONS

procedure the dispatch is generally done runtime. Calling a generic-proc-
dispatch expression always finds the correct method based on the methods
contained in the generic procedure run time.

6.11.9 generic-proc-dispatch-without-result

Syntax:

(generic-proc-dispatch-without-result gen-proc-name (arg-type1 ... arg-typen)
attribute-list)

gen-proc-name ::=identifier
attribute-list ::=(attribute ...)
attribute ::=pure | nonpure
| always-returns | may-return| never-returns | static

Keyword generic-proc-dispatch-without-result returns a simple proce-
dure that dispatches a call to generic procedure gen-proc-name with argument
type arg-typek. Expressions arg-typek have to be static type expressions. The
result type of the type of the dispatch expression is <none>. The dispatched
method must be compatible with the given attributes. Although a value of
a generic-proc-dispatch-without-result expression is a simple procedure
the dispatch is generally done runtime. Calling a generic-proc-dispatch-
without-result expression always finds the correct method based on the meth-
ods contained in the generic procedure run time.

6.11.10 param-proc-dispatch

Syntax:

(param-proc-dispatch param-proc-name arg-type1 ...arg-typen)

param-proc-name ::=identifier

A param-proc-dispatch expression returns a simple procedure obtained by
creating an instance of parametrized procedure param-proc-name. The values of
the type parameters of parametrized procedure param-proc-name are deduced
from the types arg-typek as if the types arg-typek were argument types in an
application of param-proc-name. Expressions arg-typek have to be static type
expressions.

6.11.11 param-proc-instance

Syntax:

(param-proc-instance param-proc-name arg-type1 ...arg-typen)

6.12. MACRO FORMS 69

param-proc-name ::=identifier

A param-proc-instance expression returns a simple procedure obtained by
creating an instance of parametrized procedure param-proc-name. The type pa-
rameters defined in the definition of param-proc-name are bound to expressions
arg-typek in order. Expressions arg-typek have to be static type expressions.

6.11.12 strong-assert

Syntax:

(strong-assert condition)

An assertion checks if the condition is true. If the condition is not true an
exception will be raised. See also subsection 6.11.13. The difference between
assert and strong-assert is that a strong assertion may never be neglected
because of optimization.

6.11.13 assert

Syntax:

(assert condition)

An assertion checks if the condition is true. If the condition is not true an
exception will be raised. See also subsection 6.11.12.

6.12 Macro Forms

6.12.1 define-syntax

Syntax:

(define-syntax macro-name macro-transformer)

macro-name ::=identifier

This form defines a macro.

6.12.2 let-syntax

Syntax:

70 CHAPTER 6. EXPRESSIONS

(let-syntax (var-spec1 ...var-specn) let-syntax-body-expressions)

var-speck ::=(var-namek valuek)

This form defines local macros.

6.12.3 letrec-syntax

Syntax:

(letrec-syntax (var-spec1 ...var-specn) let-syntax-body-expressions)

var-speck ::=(var-namek valuek)

This form defines local macros.

6.12.4 syntax-case

Syntax:

(syntax-case expression ([literal] ...)[clause] ...)
literal ::=identifier

This form defines a macro transformer.

6.13 Binding Forms

6.13.1 let

Syntax:

(let (var-spec1 ... var-specn) let-body-expressions)

var-speck ::=(var-namek [var-typek] valuek)

var-namek ::=identifier
let-body-expressions ::=expression ...

Expressions var-typek have to be static type expressions. The result type of
the let expression is the type of the last body expression. If the result type is
not <none> the result value of the let expression is the value of the last body
expression. The semantics of let expression is similar to these expressions in
Scheme except the variable types are checked.

6.13. BINDING FORMS 71

6.13.2 letrec and letrec*

Syntax:

({letrec | letrec* } (var-spec1 ...var-specn) letrec-body-expressions)

var-speck ::=(var-namek var-typek valuek)

var-namek ::=identifier
letrec-body-expressions ::=expression ...

Expressions var-typek have to be static type expressions. The result type
of the letrec expression is the type of the last body expression. If the result
type is not <none> the result value of the letrec expression is the value of the
last body expression. It is possible to refer to the letrec variables var-namek
recursively in the expressions valuek but these recursive uses of the variables
must occur inside a lambda expression. Keyword letrec* differs from letrec
so that letrec* guarantees to evaluate the expressions valuek in order.

6.13.3 let-mutable, letrec-mutable, and letrec*-mutable

Syntax:

({let-mutable | letrec-mutable | letrec*-mutable } (var-spec1 ...var-specn
) let-body-expressions)

var-speck ::=(var-namek var-typek valuek)
var-namek ::=identifier
let-body-expressions ::=expression ...

These expressions differ from the corresponding constant versions let, le-
trec, and letrec* so that the variables var-namek are mutable in the letxxx-
mutable expressions. Note that the variable types are compulsory in all of the
letxxx-mutable expressions.

6.13.4 let-volatile, letrec-volatile, and letrec*-volatile

Syntax:

({let-volatile | letrec-volatile | letrec*-volatile } (var-spec1 ...var-specn)

let-body-expressions)

var-speck ::=(var-namek var-typek valuek)
var-namek ::=identifier
let-body-expressions ::=expression ...

72 CHAPTER 6. EXPRESSIONS

These expressions differ from the corresponding mutable versions letxxx-
mutable so that the variables var-namek are volatile in the letxxx-volatile
expressions. Note that the variable types are compulsory in all of the letxxx-
volatile expressions.

6.14 Procedure Creation

6.14.1 lambda

Syntax:

(lambda [name] (argument-list result-type attribute-list) body-expr1, ..., body-exprn
)

name ::=identifier
argument-list ::=([arg1 ...argn])
argk ::=(arg-namek arg-typek)
arg-namek ::=identifier
attribute-list ::=(attribute ...)| attribute
attribute ::=pure | nonpure | force-pure
| always-returns | may-return| never-returns | static

A lambda expression creates a simple procedure. Note that the argument
list may be (). Expressions arg-typek and result-type have to be static type
expressions. It is an error if the result type is not <none> and the type of the last
body expression is not a subtype of result-type. If result-type is not <none> the
result value of the procedure is the value of the last body expression. Expression
name is the optional name of the lambda expression.

6.14.2 lambda-automatic

Syntax:

(lambda-automatic (argument-list attribute-list) body-expr1, ..., body-exprn
)

argument-list ::=([arg1 ...argn])
argk ::=(arg-namek arg-typek)
arg-namek ::=identifier
attribute-list ::=(attribute ...)| attribute
attribute ::=pure | nonpure | force-pure
| always-returns | may-return| never-returns | static

This form works as lambda except the result type is set to the type of the
last body expression.

6.14. PROCEDURE CREATION 73

6.14.3 param-lambda

Syntax:

(param-lambda (type1 ... typen)(argument-list result-type attribute-list)

body-expr1, ..., body-exprn)

typek ::=identifier
argument-list ::=([arg1 ...argn])
argk ::=(arg-namek arg-typek)
arg-namek ::=identifier
attribute-list ::=(attribute ...)| attribute
attribute ::=pure | nonpure | force-pure
| always-returns | may-return| never-returns | static

A param-lambda expression creates a parametrized procedure. Note that
the argument list may be (). Expressions arg-typek and result-type have to be
static type expressions. It is an error if the result type is not <none> and the
type of the last body expression is not a subtype of result-type. If result-type
is not <none> the result value of the procedure is the value of the last body
expression.

6.14.4 param-lambda-automatic

Syntax:

(param-lambda-automatic (type1 ... typen)(argument-list attribute-list)

body-expr1, ..., body-exprn)

typek ::=identifier
argument-list ::=([arg1 ...argn])
argk ::=(arg-namek arg-typek)
arg-namek ::=identifier
attribute-list ::=(attribute ...)| attribute
attribute ::=pure | nonpure | force-pure
| always-returns | may-return| never-returns | static

This form works as param-lambda except the result type is set to the type
of the last body expression.

6.14.5 prim-proc and unchecked-prim-proc

Syntax:

({prim-proc | unchecked-prim-proc }procedure-name argument-list result-
type attribute-list)

74 CHAPTER 6. EXPRESSIONS

procedure-name ::=identifier
argument-list ::=([arg-type1 ...arg-typen])
attribute-list ::=(attribute ...)| attribute
attribute ::=pure | nonpure | force-pure
| always-returns | may-return| never-returns | static

With the current Theme-D implementation the target platform is Scheme
(guile 2.0) and prim-proc defines a Theme-D procedure that calls a Scheme
procedure procedure-name. Expressions arg-typek have to be static type expres-
sions. If result-type is not <none> the Theme-D procedure also checks that the
value returned from the Scheme procedure is an instance of result-type. The se-
mantics of unchecked-prim-proc is similar to prim-proc except unchecked-
prim-proc generates no run-time type checks for the result value.

6.14.6 param-prim-proc and unchecked-param-prim-proc

Syntax:

({param-prim-proc | unchecked-param-prim-proc }procedure-name type-
parameter-list argument-list result-type attribute-list)

procedure-name ::=identifier
type-parameter-list ::=([param1 ...paramm])
paramk ::=identifier
argument-list ::=([arg-type1 ...arg-typen])
attribute-list ::=(attribute ...)| attribute
attribute ::=pure | nonpure | force-pure
| always-returns | may-return| never-returns | static

With the current Theme-D implementation the target platform is Scheme
(guile 2.0) and param-prim-proc defines a Theme-D parametrized procedure
that calls a Scheme procedure procedure-name. Expressions arg-typek have to
be static type expressions. If result-type is not <none> the Theme-D procedure
also checks that the value returned from the Scheme procedure is an instance
of result-type. The semantics of unchecked-param-prim-proc is similar to
param-prim-proc except unchecked-prim-proc generates no run-time type
checks for the result value.

6.15 Type Operations

6.15.1 cast

Syntax:

(cast type casted-value)

6.15. TYPE OPERATIONS 75

The value of the cast expression is the value of expression casted-value. The
static type of the cast expression is the value of type. Expression type has to
be a static type expression. It is an error (translation time or run-time) if the
result value of casted-value is not an instance of type. See also subsection 6.15.2.

6.15.2 try-cast

Syntax:

(try-cast type casted-value default-value)

If casted-value is an instance of type return casted-value. Otherwise return
default-value. The static type of the try-cast expression is the union of type
and the type of default-value. Expression type has to be a static type expression.
See also subsection 6.15.1.

6.15.3 static-cast

Syntax:

(static-cast type casted-value)

The value of the static-cast expression is the value of expression casted-
value. The static type of the cast expression is the value of type. Expression
type has to be a static type expression. It is a translation time error if the static
type of casted-value is not a subtype of type.

6.15.4 force-pure-expr

Syntax:

(force-pure-expr expr)

This form makes the component expression expr to appear pure for Theme-
D. See section 8.2 for example usage of the form.

6.15.5 match-type

Syntax:

(match-type value-to-match [clause-list] [else-clause])

clause-list ::=clause1, ..., clausen
clausek ::=(match-speck exprk,1, ..., exprk,m(k))

match-speck ::=(vark typek)| (typek)

else-clause ::=(else else-expr1, ..., else-exprp)

76 CHAPTER 6. EXPRESSIONS

Each clause is processed in order. If vark is given and the runtime type of
value-to-match is a subtype of typek then bind vark to value-to-match, evaluate
expressions exprk,1, ..., exprk,m(k) is order and return the value of the last ex-
pression. The static type of vark is typek. If vark is not given and the runtime
type of value-to-match is a subtype of typek then evaluate expressions exprk,1,
..., exprk,m(k) is order and return the value of the last expression. If none of the
types matches and else-clause is present evaluate the expressions else-expr1, ...,
else-exprp and return the value of the last expression.

Let K be an integer between 1 and n and u the union of types typek, k =
1, . . . ,K. If the static type of value-to-match is a subtype of u the following
optimizations are done:

• The clause clauseK needs no runtime type check because we already known
that the type of value-to-match is a subtype of typeK .

• If all the type checks k = 1, . . . ,K − 1 fail the expressions of clause K are
automatically evaluated. Consequently the clauses k > K and the else
clause need not be compiled.

6.15.6 match-type-strong

This form is identical to match-type except a translation time or runtime
error is signalled in case value-to-match matches none of the clauses. Generally,
the error is a translation time exception except when the match-type-strong
expression is invoked inside a definition of a parametrized method.

6.15.7 static-type-of

Syntax:

(static-type-of expression)

This form returns the static type of expression. This computation is done
compile time and expression is not evaluated run time.

6.15.8 :tuple

Syntax:

(:tuple a1 ...an)

Let u ::=(t1 ...tm) be the translated argument list generated from a1 ...an

. Object of type u is a list with element types t1 ...tm . Expression (:tuple
a1 ...an) is equivalent to (:pair t1 (:pair t2 (...(:pair tn <null>)...))).

6.16. OBJECT CREATION 77

6.16 Object Creation

6.16.1 constructor

Syntax:

(constructor class)

Expression class has to be a static type expression and its value has to be
a class. The value of a constructor expression is the constructor (a simple
procedure) of class class.

6.16.2 quote

Syntax:

(quote quoted-expression)

Keyword quote is used to create atom and list constants as in Scheme.

6.16.3 zero

Syntax:

(zero class)

Keyword zero accesses the zero value of a class. It is an error to use zero
for a class that does not define a zero value.

78 CHAPTER 6. EXPRESSIONS

Chapter 7

Special Procedures

Special procedures are procedures that are treated specially be Theme-D com-
piler and linker. They are typically parametrized procedures whose typing can-
not be expressed in current Theme-D. Note that the types we give for the argu-
ments of the special procedures do not generally describe all the requirements
the special procedures have for argument types. The application procedures
apply and apply-nonpure, could be implemented in Theme-D but they have
been included in the core language because of optimization.

7.1 Equality Predicates

Generic procedure equal?, which is the main equality predicate, is defined in
the standard library. The user is free to add methods to it.

7.1.1 equal-values?

Syntax:

(equal-values? object1 object2)

Arguments:

Name: object1
Type: <object>
Description: An object to be compared

Name: object2
Type: <object>
Description: An object to be compared

Result value: #t iff object1 is equal to object2

Result type: <boolean>

Purity of the procedure: pure

79

80 CHAPTER 7. SPECIAL PROCEDURES

This is the main equality predicate in Theme-D. This procedure implements
algorithm EqualValues?, see section 4.14.2. Name = is an alias for equal-values?.

7.1.2 equal-objects?

Syntax:

(equal-objects? object1 object2)

Arguments:

Name: object1
Type: <object>
Description: An object to be compared

Name: object2
Type: <object>
Description: An object to be compared

Result value: #t iff object1 is the same object as object2

Result type: <boolean>

Purity of the procedure: pure

This procedure implements algorithm EqualObjects?, see section 4.14.4.

7.1.3 equal-contents?

Syntax:

(equal-contents? object1 object2)

Arguments:

Name: object1
Type: <object>
Description: An object to be compared

Name: object2
Type: <object>
Description: An object to be compared

Result value: #t iff the contents of object1 are equal to the contents of object2
Result type: <boolean>

Purity of the procedure: pure

This procedure implements algorithm EqualContents?, see section 4.14.3.

7.2. CONTROL STRUCTURES 81

7.2 Control Structures

7.2.1 apply

Syntax:

(apply procedure argument-list)

Type parameters: %arglist, %result

Arguments:

Name: procedure
Type: (:procedure ((splice %arglist)) %result pure)

Description: procedure to be called

Name: argument-list
Type: %arglist
Description: arguments to be passed

Result value: The value returned from procedure

Result type: The result type of procedure

Purity of the procedure: pure

The type of argument-list has to be a subtype of the argument list type
of procedure. Procedure procedure has to be pure. Procedure apply calls
procedure with the arguments from argument-list. This is similar to Scheme
apply.

7.2.2 apply-nonpure

Syntax:

(apply-nonpure procedure argument-list)

Type parameters: %arglist, %result

Arguments:

Name: procedure
Type: (:procedure ((splice %arglist)) %result nonpure)

Description: procedure to be called

Name: argument-list
Type: %arglist
Description: arguments to be passed

82 CHAPTER 7. SPECIAL PROCEDURES

Result value: The value returned from procedure

Result type: The result type of procedure

Purity of the procedure: nonpure

The type of argument-list has to be a subtype of the argument list type
of procedure. Procedure procedure may be pure or nonpure. Procedure
apply-nonpure calls procedure with the arguments from argument-list. This
is similar to Scheme apply.

7.2.3 call-with-current-continuation (call/cc)

Syntax:

(call-with-current-continuation body)

Type parameters: %body-type, %jump-type

Arguments:

Name: body
Type: (:procedure ((:procedure (%jump-type) <none> pure)) %body-type

pure)

Description: The procedure to be called

Result value: Either the value of the body procedure or a value passed into the
jump procedure
Result type: (:union %body-type %jump-type)

Purity of the procedure: pure

This procedures is a built-in parametrized procedure that works as the corre-
sponding procedure in Scheme. The argument body is a procedure taking a sin-
gle procedure argument. If the body procedure invokes this argument the contin-
uation is transferred into the continuation of the call-with-current-continuation
expression. Variable call/cc is defined as an alias to call-with-current-continuation.

7.2.4 call-with-current-continuation-nonpure (call/cc-nonpure)

Syntax:

(call-with-current-continuation-nonpure body)

Type parameters: %body-type, %jump-type

Arguments:

Name: body

7.2. CONTROL STRUCTURES 83

Type: (:procedure ((:procedure (%jump-type) <none> pure)) %body-type

nonpure)

Description: The procedure to be called

Result value: Either the value of the body procedure or a value passed into the
jump procedure
Result type: (:union %body-type %jump-type)

Purity of the procedure: nonpure

This is a nonpure version of call-with-current-continuation, see the
previous section. This procedure has an alias call/cc-nonpure.

7.2.5 call-with-current-continuation-without-result (call/cc-without-result)

Syntax:

(call-with-current-continuation-without-result body)

Arguments:

Name: body
Type: (:procedure ((:procedure () <none> pure)) <none> nonpure)

Description: The procedure to be called

No result value.

Purity of the procedure: nonpure

This is a version of call-with-current-continuation having no result
value. This procedure has an alias call/cc-without-result.

7.2.6 field-ref

Syntax:

(field-ref object field-name)

Arguments:

Name: object
Type: <object>
Description: object whose field is accessed

Name: field-name
Type: <symbol>
Description: name of the field to be accessed

84 CHAPTER 7. SPECIAL PROCEDURES

Result value: Value of the field
Result type: Type of the field

Purity of the procedure: pure

Argument field-name has to be a literal symbol.

7.2.7 field-set!

Syntax:

(field-ref object field-name field-value)

Arguments:

Name: object
Type: <object>
Description: object whose field is to be set

Name: field-name
Type: <symbol>
Description: name of the field to be set

Name: field-value
Type: <object>
Description: new value of the field

Result value: No result value
Result type: <none>

Purity of the procedure: nonpure

Argument field-name has to be a literal symbol. Argument field-value

has to be an instance of the type of the field.

7.3 Type Operations

7.3.1 class-of

Syntax:

(class-of object)

Arguments:

Name: object
Type: <object>

7.3. TYPE OPERATIONS 85

Description: the object whose class is accessed

Result value: Class of the object
Result type: <class>

Purity of the procedure: pure

7.3.2 is-instance?

Syntax:

(is-instance? object type)

Arguments:

Name: object
Type: <object>
Description: An object whose type is checked

Name: type
Type: <type>
Description: A type

Result value: #t iff object is an instance of type
Result type: <boolean>

Purity of the procedure: pure

Argument type has to be a static type expression. Expression

(is-instance? object type)

is equivalent to

(is-subtype? (class-of object) type)

7.3.3 is-subtype?

Syntax:

(is-subtype? type1 type2)

Arguments:

Name: type1

Type: <type>

86 CHAPTER 7. SPECIAL PROCEDURES

Description: A type

Name: type2

Type: <type>
Description: A type

Result value: #t iff type1 is a subtype of type2

Result type: <boolean>

Purity of the procedure: pure

Arguments type1 and type2 have to be a static type expressions.

7.4 Vector Operations

7.4.1 cast-mutable-value-vector

Syntax:

(cast-mutable-value-vector target-element-type source-vector)

Arguments:

Name: target-element-type
Type: <type>
Description: Element type of the new vector

Name: source-vector
Type: any vector class
Description: The vector to be casted

Result value: A copy of the source vector with the new element type
Result type: (:mutable-value-vector target-element-type)

Purity of the procedure: pure

Special procedure cast-mutable-value-vector creates a copy of the source
vector and checks that each of its elements is an instance of target-element-type.
The check is generally done run time. The vector metaclass may change in the
cast.

7.4.2 cast-mutable-value-vector-metaclass

Syntax:

(cast-mutable-value-vector-metaclass source-vector)

Arguments:

7.4. VECTOR OPERATIONS 87

Name: source-vector
Type: any vector class
Description: The vector to be casted

Result value: A copy of the source vector with the new metaclass
Result type: (:mutable-value-vector element-type)

Purity of the procedure: pure

Special procedure cast-mutable-value-vector-metaclass creates a copy
of the source vector so that the copy has the class (:mutable-value-vector

element-type) where element-type is the element type of the original vector.

7.4.3 cast-mutable-vector

Syntax:

(cast-mutable-vector target-element-type source-vector)

Arguments:

Name: target-element-type
Type: <type>
Description: Element type of the new vector

Name: source-vector
Type: any vector class
Description: The vector to be casted

Result value: A copy of the source vector with the new element type
Result type: (:mutable-vector target-element-type)

Purity of the procedure: pure

Special procedure cast-mutable-vector creates a copy of the source vector
and checks that each of its elements is an instance of target-element-type. The
check is generally done run time. The vector metaclass may change in the cast.

7.4.4 cast-mutable-vector-metaclass

Syntax:

(cast-mutable-vector-metaclass source-vector)

Arguments:

Name: source-vector
Type: any vector class

88 CHAPTER 7. SPECIAL PROCEDURES

Description: The vector to be casted

Result value: A copy of the source vector with the new metaclass
Result type: (:mutable-vector element-type)

Purity of the procedure: pure

Special procedure cast-mutable-vector-metaclass creates a copy of the
source vector so that the copy has the class (:mutable-vector element-type)
where element-type is the element type of the original vector.

7.4.5 cast-value-vector

Syntax:

(cast-value-vector target-element-type source-vector)

Arguments:

Name: target-element-type
Type: <type>
Description: Element type of the new vector

Name: source-vector
Type: any vector class
Description: The vector to be casted

Result value: A copy of the source vector with the new element type
Result type: (:value-vector target-element-type)

Purity of the procedure: pure

Special procedure cast-value-vector creates a copy of the source vector
and checks that each of its elements is an instance of target-element-type. The
check is generally done run time. The vector metaclass may change in the cast.

7.4.6 cast-value-vector-metaclass

Syntax:

(cast-value-vector-metaclass source-vector)

Arguments:

Name: source-vector
Type: any vector class
Description: The vector to be casted

7.4. VECTOR OPERATIONS 89

Result value: A copy of the source vector with the new metaclass
Result type: (:value-vector element-type)

Purity of the procedure: pure

Special procedure cast-value-vector-metaclass creates a copy of the
source vector so that the copy has the class (:value-vector element-type)
where element-type is the element type of the original vector.

7.4.7 cast-vector

Syntax:

(cast-vector target-element-type source-vector)

Arguments:

Name: target-element-type
Type: <type>
Description: Element type of the new vector

Name: source-vector
Type: any vector class
Description: The vector to be casted

Result value: A copy of the source vector with the new element type
Result type: (:vector target-element-type)

Purity of the procedure: pure

Special procedure cast-vector creates a copy of the source vector and
checks that each of its elements is an instance of target-element-type. The check
is generally done run time. The vector metaclass may change in the cast.

7.4.8 cast-vector-metaclass

Syntax:

(cast-vector-metaclass source-vector)

Arguments:

Name: source-vector
Type: any vector class
Description: The vector to be casted

Result value: A copy of the source vector with the new metaclass
Result type: (:vector element-type)

90 CHAPTER 7. SPECIAL PROCEDURES

Purity of the procedure: pure

Special procedure cast-vector-metaclass creates a copy of the source vec-
tor so that the copy has the class (:vector element-type) where element-type
is the element type of the original vector.

7.4.9 make-mutable-value-vector

Syntax:

(make-mutable-value-vector element-type nr-of-elements element-value)

Arguments:

Name: element-type
Type: <type>
Description: Type of the vector elements

Name: nr-of-elements
Type: <integer>
Description: Number of elements in the new vector

Name: element-value
Type: <object>
Description: Value with which the new vector is filled

Result value: A mutable value vector of nr-of-elements elements with value
element-value

Result type: (:mutable-value-vector element-type)

Purity of the procedure: pure

Argument element-type has to be a static type expression. Argument element-value
has to be an instance of element-type.

7.4.10 make-mutable-vector

Syntax:

(make-mutable-vector element-type nr-of-elements element-value)

Arguments:

Name: element-type
Type: <type>
Description: Type of the vector elements

Name: nr-of-elements

7.4. VECTOR OPERATIONS 91

Type: <integer>
Description: Number of elements in the new vector

Name: element-value
Type: <object>
Description: Value with which the new vector is filled

Result value: A mutable vector of nr-of-elements elements with value element-value
Result type: (:mutable-vector element-type)

Purity of the procedure: pure

Argument element-type has to be a static type expression. Argument element-value
has to be an instance of element-type.

7.4.11 make-value-vector

Syntax:

(make-value-vector element-type nr-of-elements element-value)

Arguments:

Name: element-type
Type: <type>
Description: Type of the vector elements

Name: nr-of-elements
Type: <integer>
Description: Number of elements in the new vector

Name: element-value
Type: <object>
Description: Value with which the new vector is filled

Result value: A value vector of nr-of-elements elements with value element-value
Result type: (:value-vector element-type)

Purity of the procedure: pure

Argument element-type has to be a static type expression. Argument element-value
has to be an instance of element-type.

7.4.12 make-vector

Syntax:

(make-vector element-type nr-of-elements element-value)

92 CHAPTER 7. SPECIAL PROCEDURES

Arguments:

Name: element-type
Type: <type>
Description: Type of the vector elements

Name: nr-of-elements
Type: <integer>
Description: Number of elements in the new vector

Name: element-value
Type: <object>
Description: Value with which the new vector is filled

Result value: A vector of nr-of-elements elements with value element-value

Result type: (:vector element-type)

Purity of the procedure: pure

Argument element-type has to be a static type expression. Argument element-value
has to be an instance of element-type.

7.4.13 mutable-value-vector

Syntax:

(mutable-value-vector element-type element-1 ... element-n)

Arguments:

Name: element-type
Type: <type>
Description: The element type of the new vector

Name: element-k
Type: <object>
Description: An element of the new vector

Result value: A mutable value vector with element type element-type and ele-
ments element-1, ..., element-n
Result type: (:mutable-value-vector element-type)

Purity of the procedure: pure

Argument element-type has to be a static type expression. Each element-k

has to be an instance of element-type.

7.4. VECTOR OPERATIONS 93

7.4.14 mutable-vector

Syntax:

(mutable-vector element-type element-1 ... element-n)

Arguments:

Name: element-type
Type: <type>
Description: The element type of the new vector

Name: element-k
Type: <object>
Description: An element of the new vector

Result value: A mutable vector with element type element-type and elements
element-1, ..., element-n
Result type: (:mutable-vector element-type)

Purity of the procedure: pure

Argument element-type has to be a static type expression. Each element-k

has to be an instance of element-type.

7.4.15 value-vector

Syntax:

(value-vector element-type element-1 ... element-n)

Arguments:

Name: element-type
Type: <type>
Description: The element type of the new vector

Name: element-k
Type: <object>
Description: An element of the new vector

Result value: A value vector with element type element-type and elements
element-1, ..., element-n
Result type: (:value-vector element-type)

Purity of the procedure: pure

Argument element-type has to be a static type expression. Each element-k

has to be an instance of element-type.

94 CHAPTER 7. SPECIAL PROCEDURES

7.4.16 vector

Syntax:

(vector element-type element-1 ... element-n)

Arguments:

Name: element-type
Type: <type>
Description: The element type of the new vector

Name: element-k
Type: <object>
Description: An element of the new vector

Result value: A vector with element type element-type and elements element-1,
..., element-n
Result type: (:vector element-type)

Purity of the procedure: pure

Argument element-type has to be a static type expression. Each element-k

has to be an instance of element-type.

7.5 Tuple Operations

7.5.1 tuple-ref

Syntax:

(tuple-ref tuple index)

Arguments:

Name: tuple
Type: (:tuplet1 ... tn)
Description: A tuple

Name: index
Type: <integer>
Description: Index of the element wanted

Result value: The element of tuple at position index

Result type: tindex

The indices of a tuple start from zero.

7.5. TUPLE OPERATIONS 95

7.5.2 tuple-type-with-tail

Syntax:

(tuple-type-with-tail tuple-t tail-t)

Arguments:

Name: tuple-t
Type: <type>
Description: A tuple type

Name: tail-t
Type: <type>
Description: A type

Result value: A list type constructed from tuple-t and tail-t
Result type: <type>

Let tuple-t be a tuple type consisting of types t1, ..., tn and tail-t
be a type. Object of type (tuple-type-with-tail tuple-t tail-t) is a list
with first n element types t1, ..., tn and the tail of the nth element tail-t .
Expression (tuple-type-with-tail tuple-t tail-t) is equivalent to

(:pair t1 (:pair t2 (... (:pair tn tail-t) ...)))

96 CHAPTER 7. SPECIAL PROCEDURES

Chapter 8

Examples

Subdirectory theme-d/theme-d-code/examples contains some examples to il-
lustrate the Theme-D programming language. Subdirectory theme-d/theme-d-code/tests

contains programs and modules used to test the Theme-D system.

8.1 Abstract Data Types

Abstract data types are data types for which the data type is defined by specify-
ing the operations (procedures) that the members of the data type have to imple-
ment. In Theme-D ADT’s can be implemented either by using (parametrized)
signatures or delegation.

We define the ADT’s “sequence” and “association” as examples. The fol-
lowing operations are implemented by every sequence class:

• sequence-length that obtains the length of a sequence

• sequence-ref that obtains a sequence element at the given index

• sequence-map that maps a given procedure to a sequence

Associations resemble associations lists. The following operations are imple-
mented by every association class:

• gen-assoc that obtains a value belonging to the given key

• gen-assoc-set! that adds a binding with given key and value into the
association.

Files sequence-sgn-test.thp, sequence-sgn.th?, and sequence-list-impl.th?

contain an implementation of ADT sequence implemented with parametrized
signatures. Files list-as-sequence.th?, vector-as-sequence.th?, and sequence-test.thp

contain an implementation of ADT sequence implemented by delegation. Files
assoc-test.thp, assoc-test2.thp, assoc-list-impl.th?, assoc-sgn.th?,
hash-table.th? and singleton.th? contain and implementation of ADT
association implemented with parametrized signatures.

97

98 CHAPTER 8. EXAMPLES

8.2 Creators (high-level constructors)

Sometimes the Theme-D constructors are not flexible enough to construct in-
stances. It is possible to emulate GOOPS-style constructors in Theme-D. We
give an example here. Example code can be found from

theme-d-code/examples/creators.thp

First define a general purpose generic procedure and macro for creating
objects:

(define-generic-proc initialize)

(define-syntax create

(syntax-rules ()

((create clas arg ...)

(force-pure-expr

(let ((tmp (make clas)))

(initialize tmp arg ...)

tmp)))))

Next define some classes to be used:

(define-class <graphics-context> <object> #t #f #f public ()

((i-x <integer> public public)

(i-y <integer> public public)

(i-width <integer> public public)

(i-height <integer> public public)))

(define-class <widget> <object> #t #f #f public ()

((context (:maybe <graphics-context>) public module null)

(widget-parent (:maybe <widget>) public module null)))

(define-class <label> <widget> #t #f #f public ()

((str-text <string> public module "")))

Define then the creator for the base class

(define-simple-method initialize

(((widget <widget>) (context <graphics-context>)

(widget-parent (:maybe <widget>)))

<none> nonpure)

(logger-print "initialize widget")

(field-set! widget ’context context)

(field-set! widget ’widget-parent widget-parent))

and for the derived class

8.2. CREATORS (HIGH-LEVEL CONSTRUCTORS) 99

(define-simple-method initialize

(((label <label>) (context <graphics-context>)

(widget-parent <widget>)

(str-text <string>))

<none> nonpure)

(logger-print "initialize label")

((generic-proc-dispatch-without-result

initialize

(<widget> <graphics-context> <widget>)

())

label context widget-parent)

(field-set! label ’str-text str-text))

Now the instances of the classes can be created as follows:

(let* ((widget-parent

(create <widget>

(make <graphics-context> 100 100 400 200)

null))

(label

(create <label>

(make <graphics-context> 100 100 200 50)

widget-parent

"Hello")))

...)

Corresponding example for parametrized classes can be found from

theme-d-code/examples/param-creators.thp

In order to define creators follow the following guidelines:

• All the fields in the classes for which the creators are implemented shall
define initial value. Note that you may have to declare types of some fields
as (:maybe <myclass>) in order to allow null as the initial value.

• Define method initialize with first argument having the class for which
the instances are created and possibly some other arguments.

• For each method initialize call the initialize method of the super-
class by explicitly dispatching the method.

• When instances of the class are created its initialize method has to be
called.

• If your creators have side effects other than setting the field values create
separate macro create-nonpure and generic procedure initialize-nonpure
for them:

(define-generic-proc initialize-nonpure)

100 CHAPTER 8. EXAMPLES

(define-syntax create-nonpure

(syntax-rules ()

((create clas arg ...)

(let ((tmp (make clas)))

(initialize-nonpure tmp arg ...)

tmp)))))

Methods initialize-nonpure may call methods initialize in super
classes.

8.3 Invoking the match-type Optimization

Consider the following expression:

(match-type x
((var1 t1) clause1,1 . . . clause1,n1

)
...

((varm tm) clausem,1 . . . clausem,nm
)

...

((varN tN) clauseN,1 . . . clauseN,nN
)

(else else-clause1 . . . else-clausenelse
)

Suppose that the static type of x is a subtype of type (:union t1 . . . tm).
If we arrive to the subexpression m we know that the type of x is a subtype of
tm and we need no runtime typecheck for this.

For example, consider the following code of a mapping functional:

(define-param-proc map1

(%argtype %result-type)

(((proc (:procedure (%argtype) %result-type pure))

(lst (:uniform-list %argtype)))

(:uniform-list %result-type)

pure)

(match-type lst

((<null>) null)

((lst1 (:nonempty-uniform-list %argtype))

(cons (proc (car lst1))

(map1 proc (cdr lst1))))))

Now the clause for lst1 needs no runtime type check. We only need to check
if lst is null.

8.4 Purely Functional Iterators

See [1] for discussion about purely functional iterators. In Theme-D purely func-
tional iterators are implemented in module (standard-library iterator).

8.4. PURELY FUNCTIONAL ITERATORS 101

See program theme-d-code/tests/test470.thp for a demonstration about it-
erators.

102 CHAPTER 8. EXAMPLES

Chapter 9

Comments

• Consider the test program (tests test29) and the application of proce-
dure apply at the end of the procedure my-map. Procedure apply applies
parametrized procedure my-map and the application is dispatched runtime.
If the components of the argument list cdrs are null the type parameter
%arglist in my-map cannot be deduced and the dispatch fails. Conse-
quently we get a runtime error. A solution to this problem is to check
that cdrs does not contain null values before the recursive application,
see (tests test30).

• The type correctness of the implementations of parametrized methods
cannot always be checked translation time.

• Multiple inheritance is not going to be implemented in Theme-D. Single
inheritance arises naturally from the memory layout of objects, i.e. a
pointer to a derived class is also a pointer to the base class. This is not
true in case of multiple inheritance.

• The procedures implementing the DeduceXXX algorithms can be found
in file theme-d-type-system.scm, procedures deduce-xxx.

• The Theme-D runtime environment in

theme-d/runtime/runtime-theme-d-environment.scm

also contains procedures implementing the SelectBestMatch algorithm
since the procedure dispatch is usually done run-time.

103

104 CHAPTER 9. COMMENTS

Bibliography

[1] H. G. Baker. Iterators: signs of weakness in object ori-
ented languages. ACM OOPS Messenger, 4(3):18–25, 1993.
http://www.pipeline.com/∼hbaker1/Iterator.html.

[2] H. Barendregt, W. Dekkers, and R. Statman. Lambda calculus with types.
Cambridge University Press, 2013.

[3] A. S. et al. Revised7 Report on the Algorithmic Language Scheme. 2017.
http://www.r7rs.org/.

[4] J. Weel. Theme, a functional systems programming language. 2007.
http://www.ugcs.caltech.edu/∼weel/theme.php.

105

Index

:gen-proc, 12
:mutable-value-vector, 12, 14
:mutable-vector, 12, 13
:pair, 12
:param-proc, 12
:procedure, 12
:simple-proc, 12
:uniform-list, 12
:union, 12
:value-vector, 12, 13
:vector, 12, 13
<none>, 12
<type>, 12
apply-nonpure, 81
apply, 81
cast-mutable-value-vector-metaclass,

86
cast-mutable-value-vector, 86
cast-mutable-vector-metaclass,

87
cast-mutable-vector, 87
cast-value-vector-metaclass, 88
cast-value-vector, 88
cast-vector-metaclass, 89
cast-vector, 89
class-of, 84
equal-contents?, 80
equal-objects?, 80
equal-values?, 79
field-ref, 83
field-set!, 84
is-instance?, 85
is-subtype?, 85
make-mutable-value-vector, 90
make-mutable-vector, 90
make-value-vector, 91
make-vector, 91
mutable-value-vector, 92
mutable-vector, 93
quasiquote, 54

quote, 54
tuple-ref, 94
tuple-type-with-tail, 95
value-vector, 93
vector, 94
<boolean>, 11
<character>, 11
<class>, 11
<eof>, 11
<integer>, 11
<null>, 11
<object>, 10
<real>, 11
<string>, 11
<symbol>, 11
$+, 52
$-, 52
$=, 52
$>=, 52
$>, 52
$append, 52
$apply, 52
$car, 52
$cdr, 52
$cons, 52
$dotted-butlast, 52
$dotted-last, 52
$dotted-length, 52
$equal?, 52
$for-all, 52
$free-identifier=?, 52
$generate-temporaries, 52
$identifier?, 52
$invalid-form, 52
$length, 52
$list?, 52
$list, 52
$make-variable-transformer, 52
$map-while, 52
$map, 52

106

INDEX 107

$null?, 52
$pair?, 52
$raise, 52
$syntax-rename, 52
$syntax-violation, 52
$undefined, 52
$vector->list, 52
$vector, 52
$and, 51
$lambda, 51
$let*, 51
$letrec*, 51
$letrec, 51
$let, 51
$or, 51
:tuple, 76
add-method, 63
assert, 69
begin, 51, 66
cast, 74
constructor, 77
declare-method, 64
declare-mutable, 64
declare-volatile, 65
declare, 64
define-body, 56
define-class, 58
define-generic-proc, 59
define-goops-class, 14, 59
define-interface, 55
define-mutable, 60
define-normal-goops-class, 14
define-param-class, 61
define-param-logical-type, 60
define-param-proc-alt, 61
define-param-signature, 61
define-prim-class, 14, 62
define-proper-program, 55
define-script, 55
define-signature, 63
define-syntax, 69
define-volatile, 60
define, 58
force-pure-expr, 75
generic-proc-dispatch-without-result,

68
generic-proc-dispatch, 67
guard-general, 66
if-object, 51, 65
if, 51, 65

import-and-reexport, 5, 56
import, 5, 56
lambda-automatic, 72
lambda, 72
let-mutable, 71
let-syntax, 69
let-volatile, 71
letrec*-mutable, 71
letrec*-volatile, 71
letrec*, 71
letrec-mutable, 71
letrec-syntax, 70
letrec-volatile, 71
letrec, 71
let, 70
match-type-strong, 76
match-type, 75, 100
param-lambda-automatic, 73
param-lambda, 73
param-prim-proc, 14, 74
param-proc-dispatch, 68
param-proc-instance, 68
prelink-body, 5, 58
prevent-stripping, 57
prim-proc, 14, 73
quote, 51, 77
reexport, 57
set!, 51, 66
static-cast, 75
static-type-of, 76
strong-assert, 69
syntax-case, 70
try-cast, 75
unchecked-param-prim-proc, 14,

74
unchecked-prim-proc, 14, 73
until, 66
use, 5, 57
zero, 77

abstract data type, 97
abstract procedure type, 35
always returning procedure, 34
argument type modifier, 35

body, 5

class, 7
class attributes, 8
constant, 7

108 INDEX

constructor, 8
creator, 98

dynamic type, 7

foreign function interface, 14

generic procedure, 33, 34

Hello World, 3
hygienic macro system, 51

immediate superclass, 7
inheritance, 7
interface, 5

lexical scoping, 7, 51

macro, 51
main program, 5
module, 5
mutable value vector, 14
mutable variable, 7
mutable vector, 13

never returning procedure, 34
nonpure expression, 33
nonpure procedure, 33
normal vector, 13

pair, 14
parametrized procedure, 33, 35
parametrized signature, 10
parametrized type, 10
parametrized type instantiation, 54
primitive class, 10
primitive object, 10
procedure, 33
procedure application, 53
procedure class instantiation, 54
program, 5
proper program, 5
pure expression, 33
pure procedure, 33

recursion, 13, 55

script, 5
signature, 10
simple class, 7
simple procedure, 33, 34
static method, 34

static type, 7
static type expression, 36

tuple, 14

unit, 5

value vector, 13
variable, 7
vector, 13

zero value, 8

