
SAT Based Link-Grammar Parser

Filip Marić

August 13, 2008

1

Contents

Contents 2

1 Introduction 4
1.1 Overview of the project and the main results 4
1.2 Background . 5

I Encoding 7

2 Word-tags and their satisfaction 8
2.1 Syntax of word-tag expressions 8
2.2 Semantics of word-tag expressions 8
2.3 Word-tag satisfaction encoding 9
2.4 Conjunction order constraints 11
2.5 Cost cut-off . 14

3 Global constraints 16
3.1 Planarity . 16
3.2 Connectivity . 17
3.3 Post-processing . 18

4 Conjunction free sentences. 20

5 Conjunctive sentences 22
5.1 Introduction to fat-links . 22
5.2 Fat-link conditions - encoding 25
5.3 Different link types - examples 26
5.4 Different link types - encoding 32

6 Guiding 39

II Implementation 42

7 Mapping between variables and numbers 43
7.1 Variables to numbers: string to int mapping approach 43
7.2 Variables to numbers: int tupples to int mapping approach . . 44
7.3 Numbers to variables . 44

8 CNF conversion routines 46

2

3

9 Representing word-tags 48
9.1 Word-tag representation in the classical link-parser implementation 48
9.2 Basic simplification of word-tags. 48
9.3 Caching information from the word-tags 48

10 MiniSAT modifications 51
10.1 Adding clauses “online” . 51
10.2 Adding binary clauses . 52
10.3 Decision strategy . 52

III Evaluation 53

11 Results 54

12 Conclusions and further work 55

A Sentences 59

Bibliography 61

1
Introduction

This document describes the theorethical and implementational aspects of a
Link Grammar Parser based on SAT solving mehtods. The parser is developed
as a Google Summer of Code 2008. project.

The Link Grammar Parser, initially developed at CMU, is a syntactic parser
of English, based on link grammar — an original theory of English syntax.
Given a sentence, the system assigns to it a syntactic structure, which consists
of a set of labeled links connecting pairs of words. The parser can also produce a
”constituent” representation of a sentence (showing noun phrases, verb phrases,
etc.). The link parser is in use in many software systems, including the AbiWord
open- source word processor and RelEx Semantic Relation Extractor, and it
has also been adapted for use in other languages. Therefore, having its faster
implementation would be quite beneficial. The aim of this GSOC project was to
describe a novel implementation of link parser based on the SAT/SMT solving.
It has been hypothesized that a SAT/SMT version of the link parser may be an
order of magnitude or more faster than the current version of the link parser,
and if this hypothesis showed to be true, this could possibly make the link
parser by far the fastest open-source full-sentence parser available.

1.1 Overview of the project and the main results

The project started on May 26. 2008. and suggested pencils-down date was Au-
gust 11. 2008. During this period, several major milestones are accomplished
and important conclusions have been made:

Feasibility. It is shown that it is possible to have a link-parser implementation
completely based on SAT solving.

SAT encoding. Several SAT encodings of the link-grammar conditions are
devised and described in this document. The descriptions are given in a
strict framework of propositional logic. Many undocumented techniques
used in the original link-parser implementation have also been described.

Implementation. All proposed encodings have been fully implemented and
a fully functional parser based on SAT solving is implemented and avail-
able. The main web-page of the project is:

4

1.2. Background 5

http://www.matf.bg.ac.yu/~filip/gsoc

It contains source code and documentation of several versions of the SAT
based parser implementation.

Importance of conjunctive sentences. Experiments with the classic link-
parser implementation show that the existing parser is very fast in parsing
short and medium length sentences, but it performance gets worse when
parsing very long sentences. Analysis shows that one specific kind of sen-
tences poses much problems for the link parser — sentences that contain
coordinating conjunctions. An example of such sentence is “The cat and
dog run.” and it is composed of two simpler sentences “The cat runs.”
and “The dog runs.”. Since the classic implementation performes pretty
poor on the conjunctive sentences, improving their parsing is an absolute
priority for the overall parser efficiency.

Guiding. Developed theoretical models and implementation fail to outper-
form existing parser when it comes to enumerating all possible syntacti-
cally valid linkages. However, the experiments show that the novel SAT
based implementation can significantly outperform classic implementa-
tion when it comes to finding just several valid linkages. Therefore, the
SAT search has to be guided in a way that would ensure that the candi-
dates for the semantically best linkages are among those several linkages
that are found first. Several prototype guiding schemes are implemented,
but serious guiding implementation is left for further work.

Dictionary. While working on the link-parser implementation it has been
noted that the dictionary requires improvement. One step in this di-
rection would to fix it so that syntactically correct sentences that are
currently unparsable become parsable. The other step would be to ex-
tend the dictionary itself with the statistical information that would help
in parser guiding.

In the rest of the text we will describe devised SAT encodings and their
implementation.

1.2 Background

First we give some background information about link-grammars and SAT
solving.

1.2.1 Link-grammars

A link-grammar consists of a set of words (terminal symbols of the grammar)
each of which has a list of attached connectors, some connecting to the left,
and some connecting to the right. Two words of a sequence can be linked if
there is a connector connecting the first word to the right and the second word
to the left. A sequence of words is a valid sentence of the language defined by
the grammar if there exists a way to draw links among its words satisfying the
following conditions:

http://www.matf.bg.ac.yu/~filip/gsoc

6 Chapter 1. Introduction

Satisfaction: the links satisfy the specific linking requirements of each word
in the sequence.

Planarity: the links do not cross when drawn above the words.

Connectivity: the links suffice to connect all the words of the sequence to-
gether.

An example for a valid linkage of a sentence is:

+-------------------Xp------------------+

+-----Wd----+ +---Js---+ |

| +-Ds-+---Ss--+-MVp-+ +--Ds-+ |

| | | | | | | |

LEFT-WALL the cat.n sleeps.v on the table.n .

Each connector has its specific usage and meaning. For example, the Ds

connector connects determiners with singular nouns, MV p connects verbs with
prepositions that start a verb-modifying phrase, etc.

1.2.2 SAT problem

Propositional satisfiability problem (SAT) is the problem of deciding if there is
a truth assignment under which a given propositional formula (in conjunctive
normal form) evaluates to true. For example, the formula:

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ x3)

is true when x1 is true and x2, and x3 are false.
It is a canonical NP-complete problem and it holds a central position in

the field of computational complexity. SAT problem is also important in many
practical applications such as electronic design automation, software and hard-
ware verification, artificial intelligence, and operations research. Thanks to
recent advances in propositional solving technology, SAT solvers are becoming
the tool for attacking more and more practical problems.

Part I

Encoding

2
Word-tags and their satisfaction

The main characteristic of each word in the dictionary is its word-tag which
describes all possible syntactically correct ways for this word to connect with
other words.

2.1 Syntax of word-tag expressions

Word-tag expressions are built out of connectors (which are called atomic ex-
pressions), using the & and or operators. The operator & will denote the opera-
tion that will be called the ordered strong conjunction and the operator or will
denote the operation that will be called exclusive disjunction. Although these
connectors are in dictionary used as n-ary, it has been noted that after the
dictionary parsing and expression simplification the resulting expression trees
are always binary. This fact could be used for some minor optimizations, but
it has been decide not to rely on this fact because it has not been documented.

2.2 Semantics of word-tag expressions

There were some differences between intended semantics of word-tag expres-
sions and the description of semantics given in [1]. Finally, it has been agreed
that the semantics is as it will be described here.

Consider the word-tag expression tree e corresponding to the word on po-
sition wi.

Atomic expressions. If e is a connector, then it is satisfied if and only if
there is a link attached exactly to this connector.

Note: all connectors in the tree are considered to be independent from
one another, even if they have the same name and direction. Each con-
nector can uniquely be identified by its word wi and its unique position
in the word-tag pi (e.g., position in the pre-order tree traversal). There-
fore, we will usually denote connectors by (wi, pi) pairs and implicitly
assume their name and direction (e.g., C+). Each link has two specific
connectors that it connects (determined by their words and positions).

8

2.3. Word-tag satisfaction encoding 9

Ordered strong conjunction (&). If e is an “ordered strong conjunction”
(&) of several subexpressions e1, . . . , ek, it is satisfied only if all subex-
pressions e1, . . . , ek are satisfied, and if additional “order” constraints are
satisfied. Order constraints demand that, if C′ is a connector from the
expression ei−1 and C′′ is a connector from the expression ei, then the
words on which C′ is attached must be strictly closer to the word wi

than words on which C′′ is attached. Still, there is one very important
additional condition that differentiates the & operator from ordinary con-
junction. Namely, when the ordinary conjunction is not satisfied, one
of its operands is not satisfied, but others can be. The ordered strong
conjunction operation & imposes a much stronger condition. When a con-
junction is false all of its operands must also be false which ensures that
no connector in the expression e can be attached. This makes the & and
∧ very, very different and it is one of the reasons why the conversion to
SAT is not so direct and so promising as described in [1].

Exclusive disjunction (or). If e is and “exclusive disjunction” (or) of sev-
eral subexpressions e1, . . . , ek, it is satisfied only if exactly one of the
expression e1, . . . , ek is satisfied. This directly corresponds to the xor
operation ⊕.

2.3 Word-tag satisfaction encoding

One of the main linkage-correctness conditions is that all word-tag expressions
should be satisfied. In this section the encoding of word-tag expression satisfac-
tion conditions will be defined. This encoding resembles the standard Tseitin
transformation used to convert an arbitrary propositional formula to CNF.

Let e be the word tag expression (or its subexpression) corresponding to the
word wi on position pi in the sentence. A fresh variable will be assigned to the
expression e. If it is the whole expression of the word-tag (expression on root
position) the variable will be called simply wi. If the expression is for example
the second disjunct in the third conjunct of the whole word-tag expression the
variable would be called wi c3 d2.

Link-grammars require that word-tags of every word in the sentence must
be satisfied. The exception are so-called connective words and commas that
can take a special coordination role that is going to be described in §5. For
every word in a sentence (except these special words) a single literal clause
which enforces that the whole word tag expression is satisfied is generated.

wi

The main recursive procedure which generates satisfaction conditions for
an expression will now be explained.

Atomic expression. If e is an atomic expression (i.e., a connector) its sat-
isfaction conditions are generated using a specialized procedure whose
behavior depends on whether the sentence contains conjunctions and
therefore it will be explained in separate sections.

10 Chapter 2. Word-tags and their satisfaction

Ordered strong conjunction (&). Consider the case when e is an “ordered
strong conjunction” (&) of several subexpressions e1, . . . , ek. We distin-
guish the following three cases:

• k = 0, i.e., the empty conjunction. No conditions (i.e., clauses)
are generated in this case, as its variable can be satisfied or not
independent on the rest of the formula.

• k = 1, i.e., a single operand conjunction. Although this kind of
expressions do not occur in the dictionary, they can be created dur-
ing the word-tag expression simplification procedure. The formula
can be simplified if these nodes are just “short-circuited”. This is
achieved by simply recursively applying the same procedure on the
only subexpression e1 with same parameters as for e itself.

• k > 1. This is the only case that generates some clauses. To each
expression ei, a fresh variable is assigned. The name v ci of this
variable is built from the name v of the variable corresponding to
the expression e, by appending the string ci (where i is a concrete
number). It is now necessary to generate clauses that correspond to
the condition:

v ⇔ v c1 & . . . & v ck

This formula is converted to clauses using a specialized procedure1:

v ⇒ v c1

. . .

v ⇒ v ck

v c1 ⇒ v

. . .

v ck ⇒ v

Note: all variables v, v c1, . . . , and v ck are mutually equivalent
and can be replaced by a single variable while the listed clauses could
be omitted. Still, that would make the implementation a bit harder
but possibly would not bring so much benefit and that is why it is
left for further work.

When the clauses are generated, the ordering constraints are gener-
ated for each pair of consecutive subexpressions ei and ei+1. This
procedure will also be described in a separate section.

Exclusive disjunction (or). Consider the case when e is an “exclusive dis-
junction” (or) of several subexpressions e1, . . . , ek. We distinguish the
following three cases:

• k = 0, i.e., the empty disjunction - this case should never occur.

• k = 1, i.e., a single operand disjunction. This case is completely
equivalent to the case of conjunction with a single operand. As it

1These implications are trivially converted to clauses using the tautology ¬p∨q ≡ p ⇒ q.
Implications are used in presentation to improve readability.

2.4. Conjunction order constraints 11

was the case there, the tree is “short-circuited” by simply applying
the recursive procedure to the only subexpression e1 with the same
parameters as for e itself.

• k > 1. This is the only case that generates some clauses. Again, to
each expression ei, a fresh variable is assigned. The name v di of this
variable is built from the name v of the variable corresponding to
the expression e, by appending the string di (where i is a concrete
number). It is now necessary to generate clauses that correspond to
the condition:

v ⇔ v d1 or . . . or v dk

This formula is converted to clauses using a specialized procedure:

v ⇒ v d1 ∨ . . . ∨ v dk

v d1 ⇒ v

. . .

v dk ⇒ v

Since this disjunction must be exclusive, the exclusivity constraints
are generated using the quadratic number of clauses. Since the ex-
pression tree is usually binary, this is not a problem, and only one
clause is generated using this method.

¬v di ∨ ¬v dj , 1 ≤ i < j ≤ k

Implementation:

Implementation of this encoding is done in the class SATEncoder by the
recursive method:

void SATEncoder::generate_satisfaction_for_expression(

Exp* e, int wi, int& pi,

char* var_name, int ancestor_cost);

Along with the expression e, word position wi, and current position con-
nector pi, the name var name of the variable that corresponds to the root of
the expression e is passed along. This method also performs a cost (penalty)
cut-off (see §2.5) and the parameter ancestor cost is used for those purposes.

Connection between variable names and their numbers, converting expres-
sions to CNF and generating clauses will be described in the part devoted to
implementation (see §7, §8).

2.4 Conjunction order constraints

As it has been already said, one of the requirements for “ordered strong con-
dition” is that for the expression e1 & . . . & ek on the word wk, for each pair

12 Chapter 2. Word-tags and their satisfaction

of subexpressions (ei, ej), such that i < j and ei connects to the word wi, ej

connects to the word wj such that B(wi, wj , wk) 2 i.e., it holds:

• If C+
i is a right pointing connector on ei and C+

j is a right pointing

connector on ej, then there can be no words wi and wj such that C+
i is

connected to wi and C+
j is connected to wj and wk < wj < wi.

• If C−
i is a left pointing connector on ei and C−

j is a left pointing connector

on ej, then there can be no words wi and wj such that C−
i is connected

to wi and C−
j is connected to wj and wi < wj < wk.

First, it can be noted that it suffices to impose this constraint only on
adjacent subexpressions ei and ei+1 and the rest would follow by transitivity.
However, more optimizations can be made as the following example shows.

In the expression (A+
1 & (B+

2 & B−
3)) & (C+

4 & (A+
5 or E+

6 or D−
7)), it suffices

to require that the links on B+
2 precede the links on C+

4 , that links on the A+
1

precede the links on the B+
2 , and that links on C+

4 precede the links on A+
5

and precede the links on E+
6 . Also, it is required that links on B−

3 succeed the
links on D−

7 . Then, all other ordering constraints would follow by transitivity.
Therefore, when comparing two adjacent subexpressions ei and ei+1, there

is no need to check all their pairs of connectors pointing in some direction,
but it suffices to compare only some of them. Several notions will now be
introduced which will help identify pairs of connectors that can be skipped.

Denote by empty(e,±) the fact that the expression e can be satisfied with-
out using any ± sign connectors.3 This can be recursively evaluated by the
following procedure.

Atomic expressions. If the f is C± then empty(f,±) = ⊥ , and if it is C∓,
then empty(f,±) = ⊤.

Ordered strong conjunctions (&). If f is f1 & . . . & fk, then

empty(f,±) ⇔ empty(f1,±) ∧ . . . ∧ empty(fk,±).

Exclusive disjunctions (or). If f is f1 or . . . or fk, then

empty(f,±) ⇔ empty(f1,±) ∨ . . . ∨ empty(fk,±).

Denote by leading(f,±) all ± connectors that can be the first connectors in
a disjunct if the expression e was converted to DNF. This set can be recursively
evaluated by the following procedure.

Atomic expressions. If the f is C± then leading(f,±) = {C±} , and if it is
C∓, then leading(f,±) = {}.

Ordered strong conjunctions (&). Let f be the f1 & . . . & fk. Let 1 ≤ l ≤
k be the largest index such that

empty(f1,±) ∧ . . . ∧ empty(fl−1,±) ∧ (l = k ∨ ¬empty(fl,±)).

Then
leading(f,±) = leading(f1,±) ∪ . . . ∪ leading(fl,±)

2B(A, B, C) denotes that B is between A and C (i.e., either A − B − C or C − B − A).
3This is a shorthand notation for empty(f, +) and empty(f,−).

2.4. Conjunction order constraints 13

Exclusive disjunctions (or). If f is f1 or . . . or fk, then

leading(f,±) = leading(f1,±) ∪ . . . ∪ leading(fk,±)

Similarly, denote by trailing(f,±) the set of all connectors that can occur
as the last connector in a disjunct when f is converted to DNF. This set can
be recursively evaluated by the following procedure.

Atomic expressions. If the f is C± then trailing(f,±) = {C±} , and if it
is C∓, then trailing(f,±) = {}.

Ordered strong conjunctions (&). Let f be the f1 & . . . & fk. Let 1 ≤ l ≤
k be the smallest index such that

empty(fl+1,±) ∧ . . . ∧ empty(fk,±) ∧ (l = 1 ∨ ¬empty(fl,±)).

Then

trailing(f,±) = trailing(fl,±) ∪ . . . ∪ trailing(fk,±)

Exclusive disjunctions (or). If f is f1 or . . . or fk, then

trailing(f,±) = trailing(f1,±) ∪ . . . ∪ trailing(fk,±)

Having introduced these new notions, we can now describe how can the
ordering constraints for the ordered conjunction be efficiently generated. Let
f be the f1 & . . .& fk. It suffices to require that all links on connectors in
trailing(fi, +) precede all links on connectors in leading(fi+1, +), for 1 ≤
i < k, and that all links on connectors in trailing(fi,−) succeed all links on
connectors in leading(fi+1,−), for 1 ≤ i < k.

Let us look the given example once more. The ordering constraints are
generated for each ordered strong conjunction node in the expression.

First such node is the whole expression (A+
1 & (B+

2 & B−
3)) & (C+

4 & (A+
5

or E+
6 or D−

7)).
trailing(A+

1 & (B+
2 & B−

3), +) is {B+
2 } and leading(C+

4 & (A+
5 or E+

6 or

D−
7), +) is {C+

4 }. Therefore links on B+
2 must precede the links on C+

4 .
trailing(A+

1 & (B+
2 & B−

3),−) is {B−
3 } and leading(C+

4 & (A+
5 or E+

6 or

D−
7), +) is {D−

7 }. Therefore, links on B−
3 must succeed the links on D−

7 .

Now consider the expression A+
1 & (B+

2 & B−
3)

trailing(A+
1 , +) is {A+

1 } and leading(B+
2 & B−

3 , +) is {B+
2 }. Therefore links

on A+
1 must precede the links on B+

2 . Since trailing(A+
1 ,−), leading(B−

3 , +),
and trailing(B+

2 ,−) are empty there are no more constraints for this expres-
sion.

Now consider the expression C+
4 & (A+

5 or E+
6 or D−

7).
trailing(C+

4 , +) is {C+
4 }, and leading(A+

5 or E+
6 or D−

7 , +) is {A+
5 , E+

6 }.
Therefore, links on C+

4 must precede the links on A+
5 and on E+

6 . Since,
trailing(C+

4 ,−) is empty, no more constraints are needed for this formula.

In the rest of this section it will be assumed that for each connector (wi, pi

and each word wj , a variable linkcw((wi, pi), wj) has been defined and that it
denotes that connector (wi, pi) has made a link with the word wj .

14 Chapter 2. Word-tags and their satisfaction

When pairs of connectors (e.g., (wk, p′i) and (wk, p′′i), pi′ < pi′′) for which
the ordering conditions should be generated are identified, the following clauses
are generated.

¬linkcw((wk, p′i), wi) ∨ ¬linkcw((wk, p′′i), wj), B(wi, wj , wk)

Implementation:

Order constraints are generated using the method

void SATEncoder::generate_conjunction_order_conditions(

int wi, int pi, Exp* e1, Exp* e2);

Leading and trailing connectors are detected using methods

void trailing_connectors(

char dir, Exp* exp,

int w, int& dfs_position,

std::vector<PositionConnector*>& connectors);

void leading_connectors(

char dir, Exp* exp,

int w, int& dfs_position,

std::vector<PositionConnector*>& connectors);

All matches of a connector are easily found using the WordTag datastructure
(see 9.3).

2.5 Cost cut-off

Word tag expressions in the dictionary are sometimes explicitly assigned small
natural numbers (usually 1, 2 or 3) that are called costs or penalties. All
expressions that do not have explicitly assigned costs are considered to have
cost 0. Costs are used to denote how likely it is that some parts of word-tags
are used in valid linkages. Higher the cost for a node is, it is more unlikely
that that node is used in a valid linkage. Costs are inherited along the word-
tag expression tree. The syntax for specifying costs suggests that the number
of brackets surrounding a connector determine its cost. So, for example, the
expression A+ or [B- & [[C+]] & D-] denotes that the connector A+ has the
cost 0, connectors B− and D− have the cost 1, and the connector C+ has the
cost 3. A simple cut-off rule says that connectors with the cost higher then
a threshold value (usually 2) should not be used while parsing. When it is
determined that the cost of a node in the word-tag expression tree (whose
name is e.g., v) is higher then the threshold value, the single literal clause

¬v

is generated.

2.5. Cost cut-off 15

Implementation:

Cost cut-off is performed during the recursive expression tree traversal in the
generate satisfaction for expressionmethod. The parameter ancestor -

cost passes accumulated cost of all ancestor nodes of the current node. It cost
is summed with the cost of its ancestor and if that number exceeds the thresh-
old, the current node is cut-off. In that case, there is no need to process its
descendants and generate satisfaction conditions for them (this is one of the
main reasons why the cost cut-off is done in parallel with satisfaction condition
generating).

3
Global constraints

3.1 Planarity

One of the constraints of the link-grammars is that no links can cross. Once the
linked(wi, wj) are defined this conditions can be defined by a O(n4) number
of clauses.

¬linked(wi1 , wi2) ∨ ¬linked(wj1 , wj2), wj1 < wi1 < wj2 < wi2 ,

¬linked(wi1 , wi2) ∨ ¬linked(wj1 , wj2), wi1 < wj1 < wi2 < wj2 ,

Usually, links are not possible between all the words in a sentence, and it
is known that a huge number of linked(wi, wj) variables cannot be satisfied.
The clauses that contain those variables are trivially satisfied and therefore can
be omitted. Variables linked(wi, wj) for which a link is not possible are not
present in the resulting CNF formula.

One possible way to reduce the number of link-crossing clauses is to in-
troduce variables not linked(wi, wj)

+ and not linked(wj, wi)
− which would

denote that the word wi cannot be linked to words that are on the right or on
the left of the word wj respectively. This technique is not implemented.

Implementation:

The links-crossing constraints are generated using the method:

void SATEncoder::generate_planarity_constraints();

In order to reduce the number of clauses, the information about what pairs
of words wi and wj can be possible is stored in a matrix linked possible.
This matrix is consulted when clauses are generated. This matrix is populated
when linked(wi, wj) variables are defined in the method generate linked -

definitions. This method is going to be defined separately in §4 and §5.

16

3.2. Connectivity 17

3.2 Connectivity

One of the linkage-correctness requirements is that linkages have to be con-
nected, i.e., each word should be reachable starting from the left wall (imag-
inary word that precedes the first word of the sentence). Although a lot of
attention has been put on different algorithms which would impose the connec-
tivity requirements during the SAT search, all SAT encodings of this condition
showed out to be very complex. The approach described in [1] was both incor-
rect and inefficient. A correct, but still inefficient encoding was proposed and
even implemented, but it turned out that the best way to check for connectivity
is aposteriori. Using this approach, connectivity is checked only after a linkage
has been constructed.

The only type of connectivity constraints that is asserted before the search
starts is so called weak-connectivity which requires that all words in a sentence
are linked to at least one other word. These constraints are imposed through
the clauses1:

∨

wj<wi

linked(wj, wi) ∨
∨

wi<wj

linked(wi, wj)

At it was the case with link-crossing constraints (see §3.1), some of the
linked(wi, wj) variables are not defined at all because corresponding words
cannot be linked in any way. These variables are eliminated from the weak-
connectivity clauses during their construction.

The connectivity graph is reconstructed from the values of linked(wi, wj)
variables which denote whether the words wi and wj are linked by some kind
of link. Once the graph is constructed, a simple DFS based procedure is used
to enumerate all connected components of the graph. If there is only a single
connectivity component, the graph is connected and the linkage passes the
connectivity test. If there are several connectivity components, special clauses
are generated and added to the model in order to prevent the same kind of
dis-connectivity for the future linkages. These clauses are constructed based
on the requirement that each of the connectivity components should have at
least one branch that connects it with nodes that are not in that component.
In that way, for each connectivity component Ck the clause

∨

wi∈Ck,wj /∈Ck

linked(wi, wj)

is generated and added to formula. If there are exactly two connected compo-
nents (which is very often the case), it suffices to add only the clause for one
of them (the other clause would be exactly the same). It turns out that these
clauses have very good search-space pruning power as they cut-off not only
this single disconnected linkage, but also they cut-off all linkages that would
be disconnected in a way which would have a same connected component as
this linkage does.

1Recall that linked(wi, wj) variables require that wi < wj . That is the reason why two
groups of literals are separated.

18 Chapter 3. Global constraints

These clauses are inconsistent with the current linkage and therefore are
conflicting clauses. When the first of them is added to the SAT solver, it
backtracks and resolves the conflict. When other clauses are added, solver
has already backtracked and these clauses can be still conflicting clauses, they
can be unit clauses or ordinary clauses. Therefore, the MiniSAT procedure of
adding clauses had to be altered and implemented so that it handles all these
cases properly.

Implementation:

Before the search starts, weak connectivity constraints are generated by
using:

void SATEncoder::generate_weak_connectivity();

Once the linkage is constructed, its connectivity is checked by using:

bool SATEncoder::check_connectivity(

std::vector<int>& components);

This method assumes that the MiniSAT (represented by the class Solver)
has successfully constructed a linkage. It uses functionality of the class Vari-
ables (see §7) to find all linked(wi, wj) variables and consults the Solver to
check which of them are satisfied. When the connectivity graph is constructed
in this way, a DFS based connectivity component analysis is performed by the
method dfs connectivity components. Finally, if linkage is disconnected and
several components are identified, the clauses that prohibits the same type of
partitioning and generated by using:

void generate_partition_prohibiting(

const std::vector<int>& components);

3.3 Post-processing

PP pruning. The most frequently used “contains one rules” require that if
there is one kind of link label occurring in the sentence there must be some other
type of link occurring in the same domain as the first one. For example the rule
Wq, SI SFI SXI requires that if there is a Wq link label in the sentence, there
should be an SI, SFI or SXI link label in its domain. The label Wq is called
trigger, and the labels SI, SFI and SXI are called criterion links. When the
“in its domain” part of requirement is removed, we get a weaker condition which
could easily be encoded in SAT by propositional clauses. For each “contains
one rule”, the set T of linkcc((wi, pi), (wj , pj)) variables that match the trig-
ger is identified, and the set C of linkcc((wi, pi), (wj , pj)) variables that match
some of the criterions is identified. Then the following clauses are generated:

t ⇒
∨

c∈C

c, t ∈ T

3.3. Post-processing 19

Implementation:

Since it is assumed that word-tag satisfaction conditions are already gener-
ated, all linkcc((wi, pi), (wj , pj)) can be easily enumerated using the function-
ality of the class Variables (see §7). Check if a variable matches a trigger
or a criterion label is done using the existing functionality from the classical
link-parser implementation.

4
Conjunction free sentences.

In this chapter we will describe the SAT encoding of the link-parsing conditions
for sentences that do not contain conjunctions. When the sentence does not
contain a so called connective word (e.g., “and”, “or”, “but”), the only kind of
connections that are possible are direct connections between two connectors.

Satisfaction of connectors. Let v be the variable that corresponds to node
of the word-tag expression tree that contains this connector. The variable v

encodes the fact that the connector (wi, pi) is satisfied. Let W be a collection of
connectors that match (wi, pi) and let linkcc((wi, pi), (wj , pj)) be a collection of
variables that encode that (wi, pi) is connected to the connector (wj , pj) ∈ W .
Then the following condition must hold:

v ⇔
∨

(wj ,pj)∈W

linkcc((wi, pi), (wj , pj)),

if (wi, pi) is a multi-connector or

v ⇔
⊕

(wj ,pj)∈W

linkcc((wi, pi), (wj , pj)),

if it is not.

Implementation:

Satisfaction condition for connector are generated by using:

void SATEncoder::generate_satisfaction_for_connector(

Exp* e, int wi, int& pi,

char* var_name, int ancestor_cost);

All matches for the connector (wi, pi) are detected by a simple lookup in-
formation since the matches are all cached in the WordTag data structures
(word tag[wi].get connector(pi).matches) (see §9.3). Based on this in-
formation, a collection of variables linkcc((wi, pi), (wj , pj)) is simply formed.

20

21

Checking if the two words are linked. Two words wi and wj , such that
wi < wj are linked and linked(wi, wj) holds if and only if there are two connec-
tors (wi, pi) and (wj , pj) such that linkcc((wi, pi), (wj , pj)) holds. Therefore,
the following condition must hold.

linked(wi, wj) ⇔
⊕

pi,pj

linkcc((wi, pi), (wj , pj))

Since there cannot be two different links between the two words, the dis-
junction must be exclusive.

Implementation:

linked(wi, wj) variables are defined by using:

void SATEncoder::generate_linked_definitions();

The detection of candidate variables linkcc((wi, pi), (wj , pj)) is very fast,
once the word tags are precompiled and stored in WordTag datastructure (see
9.3). Iteration is done through the vector word tags[wi].get right connect-

ors() and all matches with the word wj are collected.

5
Conjunctive sentences

5.1 Introduction to fat-links

Although the classical link-parser implementation uses fat-links, there is not
much text about them in the documentation. In this section fat-link approach
to handling conjunctive sentences will be described.

Every connector in a sentence that contains a conjunctive word (“and”,
“or”, etc.) can be satisfied in the usual way, by a direct link with another
connector, or can be satisfied in an indirect way, through a connective word
(or comma) to which it is linked by a special kind of link called the fat-link.
Fat-links are established between words and do not use any connectors. Fat-
links are also considered to be directed links, and it is said that one of the
words linked is down and the other is up. When connective words (or commas)
are used in this special kind of way, they have to have two fat-links pointing
down to two words; one on its left hand side and the other from its right hand
side. We say that the fat-links on these two words point up to the connective
word (or comma). These words can again be either ordinary words or special
connective words (or commas), and so the fat-links of a sentence form a binary
tree forest structure. Words that are linked up to the connective word (or
comma) by a fat-link can also use ordinary thin-links, but these thin-links
cannot be attached to words beyond the fat-link, i.e. the connective word (or
comma) has to be the word that is furthest linked to the left or to the right.

When no fat-links are present in a sentence, the only way to satisfy a con-
nector (e.g., (wi, pi)) is by establishing a direct link with another connector.
When fat-link trees are present in a sentence, for some connector types1 con-
nector can be connected to not only directly to another connector, but also
to a connective word wj which is on the top (or somewhere in the middle) of
the fat-link tree and therefore has two fat-links pointing down. If an ordinary
word wk is fat-linked up to this connective word wj , there must be a connector
(wk, pk) that matches the connector (wi, pi). In this case, it is considered that
an indirect link is established between these two connectors. When both words
(e.g., wk1

and wk2
) fat-linked up to the special connective word wj are ordinary

1The connectors that can directly attach to connective words in the fat-link trees are
called andable connectors and are listed in the dictionary file.

22

5.1. Introduction to fat-links 23

words, it can happen that they both have connectors (wk1
, pk1

) and (wk2
, pk2

)
matching the connector (wi, pi), but the labels established are incompatible.
For example, the connector C+ matches both Cx− and Cy−, but labels are
Cx and Cy which are incompatible. This case is considered to be invalid and
it is ruled out by the link-grammar constraints. Since words in a fat-linked
tree are organized in a hierarchical way, a word wk that is fat-linked up to the
special connective word wj can be a special connective word itself. In that case
it must have two words fat-linked up to it and to which the same rules apply.

Conjunctive words also have their dictionary entries and can also act as
ordinary words. Still, one of the required restrictions is that connective words
cannot act as ordinary and as special in the same time, i.e., connective words
can use connectors in their word-tags iff they do not have fat-links down. In
either case, they can have a fat-link pointing up to another connective word.
Commas are also treated as special kind of connective words, but rules for them
are a little bit different.

1. Commas can act as special conjunctive words and in that case they have
to use exactly three fat-links, one pointing down to the left, one pointing
down to the right, and one pointing up to the right in the fat-link tree.

2. Ordinary conjunctive words (“and”, “or”, etc.) when acting as special
words, have to have two fat-links, one pointing down to the left and one
pointing down to the right, and they can use one additional fat-link that
points up the fat-link tree (it can be either to the left, or to the right).

3. Ordinary words can only be leaves of the fat-link trees, and they can use
exactly one fat link pointing up (either to the left, or to the right).

Let us illustrate all this on several examples. The following linkage contains
a coordinating conjunction structure and first we present it by two separate
sublinkages which is a standard way of displaying linkages containing conjunc-
tions in the classic link-parser implementation.

+-------------------Xp------------------+

+---------Wd--------+ |

| +-----Ds-----+ |

| | +---A--+-------Sp------+ |

| | | | | |

LEFT-WALL the black.a cat.n and dog.n run.v .

+-------------------Xp------------------+

+--------------Wd-------------+ |

| +----------Ds----------+--Sp-+ |

| | | | |

LEFT-WALL the black.a cat.n and dog.n run.v .

This linkage is internally represented as:

24 Chapter 5. Conjunctive sentences

+-------------------Xp------------------+

+-----------Wd------------+ |

| +----------Ds------+----Sp---+ |

| | +---A---+====+====+ | |

| | | | | | | |

LEFT-WALL the black.a cat.n and dog.n run.v .

In this case, the words cat and dog are connected with the conjunctive word
“and” by using fat-links. Connector D+ other word “the” is attached to the
connective word “and”. Each of the two words that are its children in the fat-
link tree (“cat” and “dog”) has the connector “Ds-” which is then considered
to be attached to the connector “D+” on the word “the”. The similar case
happens with the connector Sp− on the word “run”. Notice that although the
word “cat” makes an indirect connector to the word “the” it can still have
direct links, as it is the case with the link A between words “black” and “cat”.

Here is a bit more complicated example that uses fat-link nesting.

+------------------------Xp-----------------------+

+---------Wd--------+ |

| +-----Ds-----+ |

| | +---A--+------------Sp-----------+ |

| | | | | |

LEFT-WALL the black.a cat.n , mouse.n and dog.n run.v .

+------------------------Xp-----------------------+

+-------------Wd-------------+ |

| +----------Ds---------+-------Sp-------+ |

| | | | |

LEFT-WALL the black.a cat.n , mouse.n and dog.n run.v .

+------------------------Xp-----------------------+

+-------------------Wd------------------+ |

| +---------------Ds---------------+--Sp-+ |

| | | | |

LEFT-WALL the black.a cat.n , mouse.n and dog.n run.v .

+------------------------Xp-----------------------+

+----------------Wd----------------+ |

| +--------------Ds-----------+----Sp---+ |

| | +==========+ | |

| | +---A--+===+====+ +====+ | |

LEFT-WALL the black.a cat.n , mouse.n and dog.n run.v .

The fat link tree structure is as follows:

+===+and+===+

+===+,+===+ dog

cat mouse

5.2. Fat-link conditions - encoding 25

5.2 Fat-link conditions - encoding

Fat-link variables. The fact that the word wi is connected up to a con-
nective word wj is going to be described by a variable fat link(wi, wj). The
walls cannot have fat links up, so these variables will be defined when it holds
0 < wi < n− 1 and conn comma(wj). The predicate conn comma will denote
that the word wj is either a connective word (“and”, “or”, etc.) or a comma.

Fat-link down existence variables. For each connective word wi we will
introduce w

fl d
i variable which denotes that the word wi has fatlinks down.

The following conditions define these variables:

w
fl d
i ⇔

⊕

0<wj<wi

fat link(wj, wi)

w
fl d
i ⇔

⊕

wi<wj<n−1

fat link(wj , wi)

The n denotes the length of the sentence. Note that the walls cannot have
fat-links up. These definitions ensure that if the connective word has fat-links
down, it has exactly two fat-links down — one to the left and one to the right.

Connectives can serve either as special or ordinary words. The con-
dition that a connective word cannot serve both as an ordinary word and as a
connective word is encoded using:

wi ⊕ w
fl d
i

If we recall that the variable wi denotes that the word-tag expression of the
word wi is satisfied (as it was defined in Section 2.3), this condition requires
that either word-tag of the word wi is satisfied, or it has fat-links down, but
both things together cannot happen.

Fat links up definitions are similar. For each word wi (except the walls, i.e.,

0 < wi < n− 1), we introduce the variable w
fl ul
i which denotes that the word

has fat-links up to the left, the variable w
fl ur
i which denotes that the word

has fat-links up to the right.

w
fl ul
i ⇔

⊕

0<wj<wi, conn comma(wj)

fat link(i, j)

w
fl ur
i ⇔

⊕

i<wj<n−1, conn comma(wj)

fat link(i, j)

¬w
fl ul
i ∧ ¬w

fl ur
i

The special conditions that are placed on the commas are encoded with:

26 Chapter 5. Conjunctive sentences

¬w
fl d
i ∨ ¬w

fl ul
i

¬w
fl d
i ∨ w

fl ur
i

where it is assumed that wi is a comma i.e., comma(wi) holds.
If a connective word (or comma) wi has fat-link down to the word wj (i.e.,

fat link(wj, wi), it cannot have fat-links up between wj and wi. If wj < wi,
this condition is encoded with:

¬fat link(wj, wi)∨¬fat link(wi, wk), wj ≤ wk < wi, conn comma(wk),

and if wi < wk, then with:

¬fat link(wj, wi)∨¬fat link(wi, wk), wi < wk ≤ wj , conn comma(wk),

The requirement that there can be no links beyond the fat-link up is encoded
in the following way. If there is a fat-link from the word wj up to the word wi

(i.e., fat link(wj, wi)), then if wj < wi

¬fat link(wj, wi) ∨ ¬linked(wj, wk), wi < wk,

and if wi < wj , then

¬fat link(wj, wi) ∨ ¬linked(wk, wj), wk < wi,

Variable linked(wi, wj) where wi < wj denotes that there is some kind of
link (either thin or fat) between words wi and wj . There definition depends
on the specific encoding used and going to be explained in the rest of the text.

5.3 Different link types - examples

As in conjunction-free case, direct links can be established between connectors.
Unfortunately, in the presence of fat-links connectors, direct connections can
be made from a connector to a conjunctive word, or, even worse, from one con-
junctive word to another. Even when a connector (wi, pi) is directly attached
to a special connective word wj , words below the word wj that are fat-linked
up to it must have connectors that match the connector (wi, pi) and connector
(wi, pi) is indirectly attached to those connectors.

The SAT encoding encoding must be extended in a way which supports all
these different kinds of links. During the course of this projects, two different
encodings were developed and implemented. We will describe them in the
following two subsections.

5.3. Different link types - examples 27

5.3.1 Several connector-connector link types

Since there are three different types of direct connections that can be made
in a conjunctive sentence, the following three types of variables represent the
basic variables of the encoding.

1. linkdd
cc ((wi, pi), (wj , pj)) - two connectors (wi, pi) are directly connected.

2. linkdd
cw((wi, pi), wj) - connector (wi, pi) is directly connected to connective

word wj .

3. linkdd
ww(wj1 , wj2) - connective words wj1 and wj2 are directly connected.

Along with this basic variables that describe direct connections, the follow-
ing implied variables that describe indirect connections are introduced. This
variables are then used to encode various linkage correctnes constraints.

1. linkdi
cw((wi, pi), wj) - The connector (wi, pi) is indirectly connected to a

word wj i.e., it is directly connected to a connective word wk and the
word wj is below wk in the fat-link tree.

2. linkdi
cc((wi, pi), (wj , pj)) - a connector (wi, pi) is indirectly connected to

the connector (wj , pj) i.e., it is directly connected to a connective word
wk and the word wj (on which the connector (wj , pj) lies) is below wk in
the fat-link tree.

3. linkdi
ww(wj1 , wj2) - The connective word wj1 is indirectly connected to

word wj2 i.e., it is directly connected to a connective word wk and the
word wj2 is below wk in the fat-link tree.

4. linkii
cw((wi, pi), wj) - the connector (wi, pi) is indirectly-indirectly con-

nected to the word wj , i.e., there is a direct connection betwen two con-
nective words wk1

and wk2
and word wi is below wk1

and wj is below
wk2

in the fat-link tree.

5. linkii
cc((wi, pi), (wj , pj)) - the connector (wi, pi) is indirectly-indirectly

connected to the connector (wj , pj) i.e., there is a direct connection be-
twen two connective words wk1

and wk2
and word wi is below wk1

and
wj is below wk2

in the fat-link tree.

6. linkii
ww(wj1 , wj2) - The connective word wj1 is indirectly-indirectly con-

nected to a word wj2 i.e., there is a direct connection betwen two con-
nective words wk1

and wk2
and word wj1 is below wk1

and wj2 is below
wk2

in the fat-link tree.

In order to model sentences that do not contain direct-links between two
connective words (“and-and” sentences), it suffices to define only linkdd

cc ((wi, pi),-
(wj , pj)), linkdd

cw((wi, pi), wj), linkdi
cw((wi, pi), wj), and linkdi

cc((wi, pi), (wj , pj))
variables. This approach has been implemented and gave very promissing re-
sults. Unfortunately, it has been noted that it does not support “and-and”
sentences. In order to have support for “and-and” sentences, all other listed
variables have to be defined. This would yield very big formula with very
high number of variables. That is why this encoding has not been fully imple-
mented, but an alternative encoding that gives smaller formulae is developed.
We describe this alternative encoding in the following section.

28 Chapter 5. Conjunctive sentences

5.3.2 Single connector-connector link type

The SAT encoding that is going to be described in this section is based on
the fact that each satisfied connector is linked to one or more connectors on
the other words. If we know what links between connectors are established,
then we can “calculate” what connections are direct, and what connections
are indirect, what words are linked with thin links etc. Therefore, for basic
variables of the system we only take variables that describe established links
between connectors (regardless of whether these links are direct, indirect, or
indirect-indirect speaking in terms of the previous encoding). We will try to
illustrate this encoding through an example and along these basic variables,
we will introduce several implied types of variables. However the number of
these variables, as well as the number of clauses used for their definition and
for formulation of valid-linkage conditions is much smaller than in the previous
encoding. The implementation of this new encoding is implemented, but it has
not yet been fine-tuned so it does not give as promissing results as the previous
one does.

Consider the following simplified example (connections with the left-wall
will not be discussed for this example).

+----Sp----+

+====+====+ |

| | | |

cats and dogs run

1 2 3 4

In this case, the connector Sp− on the word “run” connects both to the con-
nector Sp+ on the word “cats” and the connector “Sp+” on the word “dogs”.

The fat-link structure of this sentence is described by

fat link(1, 2)
fat link(3, 2)

The fact that there is a link between the connector in word wi on posi-
tion pi and the connector wj on position pj will be encoded by the variable
linkcc((wi, pi), (wj , pj)). In the given example, we would say that following
links between connectors are established (instead of positions, for better read-
ability connector names are written):

linkcc((1, Sp+), (4, Sp−))
linkcc((3, Sp+), (4, Sp−))

This can be illustrated by:

and

cat dog run

Sp+ Sp+ Sp−

Apart from these connector-connector connections, we will say that, for ex-
ample, connector Sp− makes connections to words 1, 2, and 3. Connections be-
tween connectors and words will be denoted by variables link cw((wi, pi), wj).

5.3. Different link types - examples 29

In the given example, the following connector-word connections exist:

linkcw((1, Sp+), 4)
linkcw((3, Sp+), 4)
linkcw((4, Sp−), 1)
linkcw((4, Sp−), 2)
linkcw((4, Sp−), 3)

This can be illustrated with:

and

cat dog run

Sp+ Sp+ Sp−

Connections of connector Sp− to words 1 and 3 will be called indirect con-
nections, while the connection with the word 2 will be called a direct connection.
A connector-word connection will be called a direct connection iff it is not inher-
ited from the word above it in a fat-link tree. Variables link topcw((wi, pi), wj)
will denote this kind of connection2. In the previous example, the following
direct connections are made:

link topcw((1, Sp+), 4)
link topcw((3, Sp+), 4)
link topcw((4, Sp−), 2)

This can be illustrated with:

and

cat dog run

Sp+ Sp+ Sp−

If connector is not a multi-connector, it should be able to make only one
direct connection, but can make several indirect connections, provided that the
words it connects to are all parts of a single fat-link tree.

In order to detect direct links between words, we have to introduce direct
connections from words to words. Therefore, the variables link topww(wi, wj)
will denote that there is a direct connection from the word wi to the word wj .
This connection must not be inherited from above on the wj side, i.e., wj is
either top of fat-link tree or, if word wj has a fat-link parent wk, then there
is no connection from the word wi to the word wk. In the given example, the
following link topww connections hold:

link topww(1, 4)
link topww(2, 4)
link topww(3, 4)
link topww(4, 2)

2The name link top is used to indicate that the link is made to the top of a fat-link
structure.

30 Chapter 5. Conjunctive sentences

This can be illustrated with

and

cat dog run

Sp+ Sp+ Sp−

If wi is used as an ordinary word (i.e., it has no fat-links down), it is
directly connected to the top of the word wj iff it has a connector that is
directly connected to the top of word wj . If it is used as a connective word
(i.e., it has fat-links down), then it directly connected to the top of the word
wj iff both of its children in the fat-link tree are directly connected to the word
wj . The connection from “and” to “run” drawn in dashed line-style is formed
this way.

Finally, there is a thin-link between two words iff they are connected on top
of one another. The fact that there is a thin-link between two-words is denoted
by variables thin link(wi, wj), where wi < wj . In the previous example, the
only thin link is between “and” and “run”:

thin link(2, 4)

We would say that two variables are linked, denoted by linked(wi, wj),
where wi < wj , iff there is either a thin-link between them, or if one (or both)
of them is a connective word then a fat-link up to it.

This model is good enough to describe even more complex cases when there
is direct link between two connective words. One of such sentences example in
the sentence “the cat and dog run and jump”. The only valid linkage for this
sentence is:

+-----Ds---+------Sp------+

| +====+====+ +====+====+

| | | | | | |

the cat and dog run and jump

1 2 3 4 5 6 7

The fat-link structure of the sentence is described by:

fat link(2, 3)
fat link(4, 3)
fat link(5, 6)
fat link(7, 6)

The links that are established between connectors are:

linkcc((1, D+), (2, Ds−))
linkcc((1, D+), (4, Ds−))
linkcc((2, Ss+), (5, Sp−))
linkcc((4, Ss+), (5, Sp−))
linkcc((2, Ss+), (7, Sp−))
linkcc((4, Ss+), (7, Sp−))

5.3. Different link types - examples 31

This can be illustrated by:

and and

the cat dog run jump

D+ Ss− Ss− Sp− Sp−

Ds+ Ds+

Using only the links established between connectors, links from connectors
to words can be determined.

linkcw((1, D+), 2)
linkcw((1, D+), 3)
linkcw((1, D+), 4)
linkcw((2, Ds−), 1)
linkcw((4, Ds−), 1)
linkcw((2, Ss+), 5)
linkcw((2, Ss+), 6)
linkcw((2, Ss+), 7)
linkcw((4, Ss+), 5)
linkcw((4, Ss+), 6)
linkcw((4, Ss+), 7)
linkcw((5, Sp−), 2)
linkcw((5, Sp−), 3)
linkcw((5, Sp−), 4)
linkcw((7, Sp−), 2)
linkcw((7, Sp−), 3)
linkcw((7, Sp−), 4)

This can be illustrated by:

and and

the cat dog run jump

D+ Ds− Ds− Sp− Sp−

Ss+ Ss+

Only some of these links are “direct” meaning that they connect to top of
a potential fat-link tree (to be more precise, they do not connect somewhere
bellow the root of a fat-link tree).

link topcw((1, D+), 3)
link topcw((2, Ds−), 1)
link topcw((4, Ds−), 1)
link topcw((2, Ss+), 6)
link topcw((4, Ss+), 6)
link topcw((5, Sp−), 3)
link topcw((7, Sp−), 3)

32 Chapter 5. Conjunctive sentences

This can be illustrated by:

and and

the cat dog run jump

D+ Ds− Ds− Sp− Sp−

Ss+ Ss+

Using this, the “direct” connections from words to words can be determined:

link topww(1, 3)
link topww(2, 1)
link topww(4, 1)
link topww(3, 1)
link topww(2, 6)
link topww(4, 6)
link topww(3, 6)
link topww(5, 3)
link topww(7, 3)
link topww(6, 3)

This can be illustrated by:

and and

the cat dog run jump

D+ Ds− Ds− Sp− Sp−

Ss+ Ss+

The only two-way connections are:

thin link(1, 3)
thin link(3, 6)

This, together with the fat link structure, determines the connectivity
graph.

linked(2, 3)
linked(4, 3)
linked(5, 6)
linked(7, 6)
linked(1, 3)
linked(3, 6)

We will now describe numerous clauses that describe this model.

5.4 Different link types - encoding

Links between connectors. The set of these variables linkcc((wi, pi), (wj , pj))
is completely the same as for sentences that do not contain conjunctions.

5.4. Different link types - encoding 33

Links between connectors and words. If the word wj is an ordinary
word, then the connector (wi, pi) is linked to it and linkcw((wi, pi), wj) holds
iff there is a connector (wj , pj) such that linkcc((wi, pi), (wj , pj)) holds.

If wj is a connective word, then (wi, pi) can be linked directly to one of its
connectors in which case it must not have fat-links down, or if has fat-links
down it can be linked to connectors of the words below wj in the fat-link tree.

Notice that in some cases it can trivially be detected the the link between
the connector (wi, pi) and the word wj cannot be established.

1. wj is an ordinary word and it does not have any connector that matches
(wi, pi).

2. wj is a connective word, it does not have any connector that matches
(wi, pi) and either (wi, pi) is not an andable connector, or there is no
word wk such that B(wi, wk, wj) with a connector that can match (wi, pi)
or there is no word wk such that B(wj , wi, wk) with a connector that can
match (wi, pi).

In order to reduce the size of the formula and to make the solving process
faster, we chose to eliminate those variables from the formula.

If the variable linkcw((wi, pi), wj) is not eliminated then one of the two
cases does not hold.

• If wj is an ordinary word, then there exists at least one matching con-
nector (wj , pj) and the following condition is generated.

linkcw((wi, pi), wj) ⇔
⊕

pj

linkcc((wi, pi), (wj , pj))

• If wj is a connective word, then it either has a matching connector
(wj , pj) or the connector is andable and there are words wk1

such that
B(wi, wk1

, wj) and wk2
such that B(wj, wi, wk2

) with connectors that can
match (wi, pi).

If the word is used as an ordinary word, then one of its matching connec-
tors must be connected (if there are matching connectors at all).

wj =⇒ linkcw((wi, pi), wj) ⇔
⊕

pj

linkcc((wi, pi), (wj , pj))

This condition can be converted to clauses as:

wj ∧ linkcw((wi, pi), wj) ⇒
∨

pj

linkcc((wi, pi), (wj , pj))

linkcc((wi, pi), (wj , pj)) ⇒ linkcw((wi, pi), wj), for all pj

Of course, there should also be the exclusive disjunction conditions.

34 Chapter 5. Conjunctive sentences

¬linkcc((wi, pi), (wj , p
′
j)) ∨ ¬linkcc((wi, pi), (wj , p

′′
j)), p′j < p′′j

If the word wj is used as a special connective word (i.e., it has two fat-
links down), but if the connector (wi, pi) is not andable or there is no
word wk such that B(wi, wk, wj) with a connector that can match (wi, pi)
or there is no word wk such that B(wj , wi, wk) with a connector that can
match (wi, pi), then there can be no connection between (wi, pi) and wj .
This is encoded by the clause:

w
fl d
j ⇒ ¬linkcw((wi, pi), wj)

In other case the connector (wi, pi) is an andable connector and there is a
nonempty collection of words Wk1

such that for each wk1
∈ Wk1

it holds
that B(wi, wk1

, wj) and variable link((wi, pi), wk1
) is not eliminated, and

a nonempty collection of words Wk2
such that for each wk2

∈ Wk2
it holds

that B(wi, wj , wk2
) and variable link((wi, pi), wk2

) is not eliminated.

In that case, the following must hold:

w
fl d
j =⇒

linkcw((wi, pi), wj) ⇔

0

@

_

wk1
∈Wk1

(fat link(wk1
, wj) ∧ linkcw((wi, pi), wk1

))

1

A ∧

0

@

_

wk2
∈Wk2

(fat link(wk2
, wj) ∧ linkcw((wi, pi), wk2

))

1

A

!

In order to convert the last formula to CNF, auxiliary variables linkcw((wi, pi), wj)
k1

and linkcw((wi, pi), wj)
k2 are introduced.

In that case, the equation reduces to:

w
fl d
j =⇒
“

linkcw((wi, pi), wj) ⇔ linkcw((wi, pi), wj)
k1

∧ linkcw((wi, pi), wj)
k2

”

linkcw((wi, pi), wj)
k1

⇔

_

wk1
∈Wk1

(fat link(wk1
, wj) ∧ linkcw((wi, pi), wk1

))

linkcw((wi, pi), wj)
k2

⇔

_

wk2
∈Wk2

(fat link(wk2
, wj) ∧ linkcw((wi, pi), wk2

))

Then, the following clauses are generated:

5.4. Different link types - encoding 35

w
fl d
j ∧ linkcw((wi, pi), wj) ⇒ linkcw((wi, pi), wj)

k1

w
fl d
j ∧ linkcw((wi, pi), wj) ⇒ linkcw((wi, pi), wj)

k2

linkcw((wi, pi), wj)
k1 ∧ linkcw((wi, pi), wj)

k2 ⇒ linkcw((wi, pi), wj)

linkcw((wi, pi), wj)
k1 ⇒

∨

wk1
∈Wk1

fat link(wk1
, wj)

linkcw((wi, pi), wj)
k2 ⇒

∨

wk2
∈Wk2

fat link(wk2
, wj)

linkcw((wi, pi), wj)
k1 ∧ fat link(wk1

, wj) ⇒ linkcw((wi, pi), wk1
)

linkcw((wi, pi), wj)
k2 ∧ fat link(wk2

, wj) ⇒ linkcw((wi, pi), wk2
)

linkcw((wi, pi), wk1
) ∧ fat link(wk1

, wj) ⇒ linkcw((wi, pi), wj)
k1

linkcw((wi, pi), wk2
) ∧ fat link(wk2

, wj) ⇒ linkcw((wi, pi), wj)
k2

The last two formulae are families of clauses and there should be one for
each wk1

∈ Wk1
and wk2

∈ Wk2
. The last two types of clauses must hold,

because if there is a fat-link from wk1
to wj , there cannot be any other

fat-link from a word in Wk1
to wj .

Although these clauses suffice to have a complete model, the search could
be made faster if the following clauses are also generated.

linkcw((wi, pi), wj)
k1 ⇒

∨

wk1
∈Wk1

linkcw((wi, pi), wk1
)

linkcw((wi, pi), wj)
k2 ⇒

∨

wk2
∈Wk2

linkcw((wi, pi), wk2
)

Implementation:

Each connector is processed and all specified clauses are generated as a part
of the method

void SATEncoder::generate_satisfaction_for_connector(

Exp* e, int wi, int& pi,

char* var_name, int ancestor_cost);

For each connector (wi, pi) its set of linkcc((wi, pi), (wj , pj)) variables is eas-
ily determined by consulting the word tag[wi].get connector(pi).matches.

The method

bool SATEncoder::link_cw_possible(int wi, int pi, int wj);

is used for checking if a connector between the connector (wi, pi) and the word
wj is possible and whether the variable linkcw((wi, pi), wj) is eliminated. This
method uses the:

36 Chapter 5. Conjunctive sentences

bool SATEncoder::link_cw_possible_fl(int wi, int pi, int wj);

which checks if the connection is possible when wj is used as a special word
and has fat-links down. This method can be also used on its own.

Generating all the complicated clauses for the connective with fat-links
down is delegated to the method

void SATEncoder::generate_link_cw_connective_definition();

Direct links from connectors to words. Recall that the link from a con-
nector to (wi, pi) to the word wj is called direct if there is a link between the
connector (wi, pi) and the word wj and that link it is not inherited from above,
i.e., if there is no connective word wk such that the wj is fat-linked up wk,
such that the connector (wi, pi) is linked to wk. Direct links from connectors
to words are encoded with link topcw((wi, pi), wj) variables.

• If the connector (wi, pi) is not an andable connector, then the direct link
is established iff an ordinary link is established. This is described by the
relation:

link topcw((wi, pi), wj) ⇔ linkcw((wi, pi), wj)

• If the connector (wi, pi) is an andable connector, it is directly connected
to wj if there is no connective word wk such that wj is fat-linked up to
wk and that the connector (wi, pi) is connected to it. Let Wk be the
set of connective words wk such that wk and wj are on the same side of
wi (i.e., ¬B(wj , wi, wk)) and that the variable linkcw((wi, pi), wk) is not
eliminated. Then it holds that

link topcw((wi, pi), wj) ⇐⇒ linkcw((wi, pi), wj) ∧

¬

0

@

_

k∈Wk

fat link(wj , wk) ∧ linkcw((wi, pi), wk)

1

A

This formula can be converted to clauses as:

link topcw((wi, pi), wj) ⇒ linkcw((wi, pi), wj)

link topcw((wi, pi), wj) ⇒ ¬fat link(wj, wk) ∨ ¬linkcw((wi, pi), wk)

¬link topcw((wi, pi), wj) ∧ linkcw((wi, pi), wj) ⇒
∨

k∈Wk

fat link(wj, wk)

¬link topcw((wi, pi), wj) ∧ linkcw((wi, pi), wj) ∧ fat link(wj , wk) ⇒

linkcw((wi, pi), wk)

5.4. Different link types - encoding 37

Second and fourth formulae are families of clauses and there should be
one of these for each k ∈ Wk. The clauses of the fourth family must hold,
because if there is a fat-link up from wj to wk, then there can be no other
fat-link up from wj .

Although these clauses suffice for the completeness of the encoding, the
following clauses could be added to speed up the search process:

¬link topcw((wi, pi), wj) ∧ linkcw((wi, pi), wj) ⇒
∨

k∈Wk

linkcw((wi, pi), wk)

Implementation:

Defining link topcw((wi, pi), wj) variables also happens as a part of the
method

void SATEncoder::generate_satisfaction_for_connector(

Exp* e, int wi, int& pi,

char* var_name, int ancestor_cost);

Generating clauses is delegated to methods

void generate_link_top_cw_iff_link_cw();

void generate_link_top_cw_definition();

The set Wk is determined using the method link cw possible.

Direct links from words to words.

• If wi is an ordinary word, then there is direct link from it to the top of
the word wj iff there is a connector on wi which is linked to top of wj .

link topww(wi, wj) ⇔
∨

(wi,pi)

link topcw((wi, pi), wj)

• If wi is a connective word, but acts as an ordinary one, then the last
relation conditionally holds

wi =⇒ link topww(wi, wj) ⇔
∨

(wi,pi)

link topcw((wi, pi), wj)

If wi acts as a special word (i.e., it has fat-links down), then it is dirrectly
connected to wj (i.e., connected to its top) iff the two words that are fat-
linked up to it are directly connected wj . These conditions are converted
to clauses:

38 Chapter 5. Conjunctive sentences

link topww(wi, wj) ∧ fat link(wk, wi) ⇒ link topww(wk, wj),

B(wi, wk, wj) ∨ B(wk, wi, wj)

fat link(wk1
, wi) ∧ link topww(wk1

, wj) ∧

fat link(wk2
, wi) ∧ link topww(wk2

, wj) ⇒ link topww(wi, wj)

B(wi, wk1
, wj) ∧ B(wk2

, wi, wj)

Thin-links Variables thin link(wi, wj), wi < wj determine if a thin-link has
been established between two words. Two words are connected by a thin-link
iff there is a direct connection from one to another and vice-versa.

thin link(wi, wj) ⇔ link topww(wi, wj) ∧ link topww(wj , wi)

Linked words Now all neccessary auxiliary variables have been defined, we
can proceed and define linked(wi, wj) that determine if the two words are linked
and that are crucial for formulating and checking planarity and connectivity
constraints. Two ordinary words are linked, iff there is a thin-link between
them.

linked(wi, wj) ⇔ thin link(wi, wj)

If wi is a connective word (the case of wj being a connective word is analo-
gous), then the words are connected iff there is either a thin-link between them
or a fat-link from wj to wi.

linked(wi, wj) ⇔ thin link(wi, wj) ∨ fat link(wj, wi)

If both words are connective words, then they are linked if there is a thin-
link between them or a fat-link in either direction.

linked(wi, wj) ⇔ thin link(wi, wj) ∨ fat link(wj, wi) ∨ fat link(wi, wj)

6
Guiding

Although a sentence might have a large number of syntactically correct link-
ages, there is usually just a small number (often that is only one) semantically
correct linkages. That is why having a mechanism of ranking different parses
which would prioritize semantically correct linkages is very important. The
classic link-parser implementation constructs all syntactically correct linkages
and then sorts them descending according to a ranking which uses costs (penal-
ties) from the dictionary and the total length of links present in the linkage.
The rationale for the latter criterion is that usually only words that are very
close should be linked and the total sum of link-lengths should be small.

One of the design goals for the SAT based link-parser implementation was
to avoid the need for constructing all syntactically valid linkages of a sentence
but to use only top N linkages. In order to have this possible there has to be
some search guiding that would increase the probability that the semantically
valid linkages are among those top N . This opens up several problems.

First, SAT problem, as originally formulated is the problem of deciding
whether there is a satisfying valuation (i.e., a model) for a propositional for-
mula. If it is formulated like this, it is a decision problem. Usages of SAT
in software industry and in theorem proving community (usually for software
and hardware verification) very often need to show that there is no satisfying
valuation for a formula. When treated as a decision problem, all satisfying
valuations are treated in an equivalent fashion. Heuristic components of SAT
solvers, primarily the decision (i.e. variable selection) heuristic, traverse the
search space so that parts of the search space that contain many potential
models are examined with greater priority. Stumbling across a model (what
ever model that might be) gives answer to the decision problem.

On the other hand, link-parser application requires SAT to behave very
different. Link-parsing can be formulated as an optimization problem. Unlike
in verification and theorem proving, it is expected that the formula that is
being solved has a satisfying valuation, and in most cases even that it has
many satisfying valuations. Finding any of them would give the answer to the
decision problem, but that answer is usually already anticipated to be positive.
The optimization problem that needs to be solved assumes that some ordering
of models of the formula is established and it is required that SAT solver finds
exactly the model that is the top one in that ordering. This task is much

39

40 Chapter 6. Guiding

harder then simply finding any model. As a very unpleasant consequence,
state-of-the-art decision heuristics cannot be used without making some smart
adjustments. Decision heuristics have to be adjusted in a way which would
enforce a prioritized systematic traversal of the search space. In this scenario,
priority must be given to parts of the search space that potentially contain the
top models, and not to parts of the search space that are filled with models
that are easily found but are not among the top in the model ordering.

The way in which a model ordering is constructed in the SAT based link-
parser implementation is assign two different numbers to each variable in the
formula:

1. Decision priority

2. Decision polarity

The systematic search builds models so that variables with higher priorities
are chosen first and they are assigned to have their preferred polarity. Lets say
that the variable v has been assigned its preferred polarity p. Its polarity is
going to be flipped to ¬p only after all variables having smaller priority than
v have been tested and it is determined that there can no model that contains
v in polarity p. There are several drawbacks to this approach.

1. If there is no satisfying valuation which contains v in the polarity p, but
the variable v has a high priority, it can take a very large amount of
time to investigate all possible valuations of variables with smaller prior-
ity than v, because there can be a very large number of such variables.
Therefore, it is crucial for a guiding scheme to ensure that when vari-
ables are assigned high priorities it is the case that in valid linkages they
really occur only in their preferred priorities. If the preferred polarity of
a variable can not be determined with a high reliability degree, it must
not be given a high decision priority.

2. This total order of variables based on their priorities enforces that mea-
sure of quality of parses (i.e., the ordering of parses based on that mea-
sure) is calculated as a function of priority of variable that has the op-
posite priority then its preferred priority. Let us illustrate this on an
example. Assume that variable x has priority 3, y has 2 and z has
1 and all variables have the preferred polarity ⊤. In this case, the
model x = ⊤, y = ⊥, z = ⊥ has the better quality then the model
x = ⊥, y = ⊤, z = ⊤, because the maximal priority variable x has its
preferred value. The values of all other variables are irrelevant for the
measure of model quality. It would be natural to have an ordering which
would say that the second model x = ⊥, y = ⊤, z = ⊤ has better quality
then the first model x = ⊤, y = ⊥, z = ⊥, because it has two variables
set on their preferred polarities and only one that is not. Also, it would
be natural to say that two models are of equal quality because the sum
of priorities of the variables with missed priority is 3 in both cases. How-
ever, although the two latter measures look appealing, only the first one
can easily be implemented by using the described technique. It would be
hard (although not impossible) to simulate counting and summation in
SAT and the two latter orderings would require to have this.

41

Implementation:

The guiding scheme for the SAT search has to specify priorities and polari-
ties for every variable of the SAT encoding. Since there can be several different
guiding schemes, it has been decided to create an API which would allow users
to implement different guiding schemes relatively independent from the rest of
the system.

Part II

Implementation

7
Mapping between variables and numbers

All propositional clauses consist of variables which are represented by integers.
Various SAT encodings introduce a number of different variables. When imple-
menting a SAT encoding there is the need to assign different numbers to differ-
ent variables. Variables usually have some meaning and are named according to
their type and their parameters. For example, variable linkcc((wi, pi), (wj , pj))
has the meaning of a link between the connector C+

i in the word wi on the po-
sition pi and the connector C−

j in the word wj on the position pj . On the other
hand, when implemented, clauses can only contain a number that is a place-
holder for this specific variable. Therefore, a two-way mapping between these
higher-level readable descriptions of variables and numbers that represent their
internal codes had to be established. The implementation of this functionality
is done through the class Variables. First the implementation of a mapping
that assigns numbers to high-level descriptions of a variable will be described,
and after that the inverse mapping which gives higher-level description and
information about the variable with a given number will be described.

7.1 Variables to numbers: string to int mapping approach

The easiest way of implementing this functionality could be achieved if higher-
level variable representations are kept as strings, and if these strings are mapped
to numbers. This functionality is achieved through the function:

int Variables::get_string_variable(char* name);

If there is already a number assigned to this name, it is returned. If there
is not, then a fresh number is assigned to this name and it is memorized and
returned. This interface is implemented through a mapping between names
and numbers which is stored in a trie (short for retrieval) data-structure im-
plemented in the class Trie. Decision to use a trie was made after it has
been noted that many variables introduced by a specific encoding for the link-
grammar word-tags that uses Tseitin encoding described in the section 2.3 have
very similar names and that it is often the case that one variable name is a pre-
fix of several other names. In order to save some space, the trie is implemented
so that it only supports variables names built-on a small alphabet Σ.

43

44 Chapter 7. Mapping between variables and numbers

Although the described string-to-int mapping approach is very uniform,
careful profiling showed that it can be sometimes very slow. The critical
operation turned out to be the creation of strings from data that represent
variables. For the linkcc((wi, pi), (wj , pj)) variables described above, simple
sprintf(name, "link %d %d %d %d", wi, pi, wj, pj) turned out to be ex-
tremely slow – much slower than the retrieval from the trie itself. In order to
improve efficiency, faster implementations of printing strings and integers into
a character buffer are implemented (fast sprintf). Although this helped to
some extent, it was decided to introduce other kinds of mappings for specific
kinds of variables.

7.2 Variables to numbers: int tupples to int mapping approach

Using this approach a separate registry for several different types of variables
is kept. The public interface of the class Variables is extended by functions
such as1:

int Variables::get_linked_variable (wi, wj);

int Variables::get_link_variable (wi, pi, wj, pj);

...

The implementation of these functions is made in a way which is optimal
for these specific kinds of variables.

For example, if we consider a linked(wi, wj) variables which describes the
fact that there is a link between the words wi and wj , it can be noticed that
it is uniquely determined by its (wi, wj) pair. Therefore, the fastest retrieval
of variable numbers for these variables can be achieved if a map from pairs
of ints to ints is kept. Of course, it is best to use a matrix of ints (the ma-
trix datatype is implemented in Matrix<T> and for symmetric matrices in its
subclass MatrixUpperTriagle<T>).

Similarly, for the linkcc((wi, pi), (wj , pj)) variable already described in a
previous example, it can be noted that this specific link variable is uniquely
determined by its (wi, pi, wj , pj) variable. The mapping from this 4-tupples of
ints to ints is implemented by keeping a matrix of maps from int pairs to ints.
The matrix is indexed by the (wi, wj) pairs, because they come from a range
known in advance (that is [0, n), where n is the length of the sentence) and it is
expected that for this matrix to be quite dense. On the other hand, mappings
from (pi, pj) to ints are stored in std::map< std::pair<int, int>, int >,
because the range of positions pi is not known in advance and this mapping is
expected to be quite sparse.

7.3 Numbers to variables

Once the propositional model of a formula is found, it consists of integers
representing variable numbers. In order to reconstruct a linkage from these
numbers a mapping inverse to mappings described previously should be also

1Note that various encodings introduce much more variable types and these two variable
types shown in this document are just representatives of the technique used for other variable
types as well.

7.3. Numbers to variables 45

implemented. First, it can be noted that only some variables are relevant
for reconstructing the linkage from the propositional model and these inverse
mappings are kept only for those specific kinds of variables. The first question
that needs to be answered is: “What are the numbers of all variables of this
specific type?”. In order to implement answers to those questions the interface
is extended by methods:

const std::vector<int>& Variables::get_linked_variables() const;

const std::vector<int>& Variables::get_link_variables() const;

...

These functions are trivially implemented by maintaining int vectors for
relevant variable types.

The next question that needs to be addressed is: “What variable does the
number v represent? Give me information about this variable”. The first ap-
proach was to return the information in a form of string (e.g., "link 3 2 Sp 5 6 Spx"),
but in order to retrieve the information from the returned string you need to
split it and parse it which is slow and cumbersome. Therefore, for variables
that are of interest for model reconstruction, structures that contain additional
information about those variables are defined and kept. We give one example
of such functionality.

struct Variables::LinkVariable {

int left_word;

int left_position;

const char* left_connector;

int right_word;

int right_position;

const char* right_connector;

};

const Variables::LinkVariable&

Variables::get_link_variable(int variable_number);

Structures defining information about all variables are memorized during
variable construction (i.e., when they are assigned a number). Although one
may be concerned about the memory consumption because all this bookkeep-
ing, it turns out that this is quite neglectable when compared by the size of the
CNF formula that is maintained and which constantly grows during the SAT
solving process.

Since the classic link parser implementation is done in C, not in C++,
and the class Variables is just a simple technical class we decided not to
use the advanced OO concepts such as inheritance or polymorphism in its
implementation.

For the list of all variable types currently supported by the class variables,
the reader should consult the code itself and the comments listed in the code.

8
CNF conversion routines

The main task of the SAT encoding phase is to generate the formula that
describes all link-parsing conditions in conjunctive normal form and to pass
all its clauses to the SAT solver. Since the SAT solver used is MiniSAT, the
clauses are expected to be prepared using its internal data structures (vec -
for vectors, and Lit for literals) instead of standard ones. The main burden
of creating the formula lies on the class SATEncoder. It builds clauses and
passes them to MiniSAT using the method:

void add_clause(vec<Lit>& clause);

An convenient method for asserting facts is the method

void add_literal(Lit l);

which builds a single literal clause and passes it to MiniSAT.
Many link-grammar constraints are usually described as equivalences of cer-

tain type. This is why, it has been decided to implement special functions that
preform conversion to CNF of certain types of formulae. All these functions are
implemented as methods of the class SATEncoder. As these clauses are di-
rectly passed to the SAT solver MiniSAT, in order to obtain maximal efficiency,
these CNF conversion routines also expect their parameters in MiniSAT data
structures. Now we give a short summary of these CNF conversion methods.

∨ definitions. Formulae that represent definition of a literal by a classic
disjunction of several other literals:

l ⇔ l1 ∨ . . . ∨ lk

is converted to CNF using the method:

void generate_classic_or_definition(Lit lhs, vec<Lit>& rhs);

∧ definitions. Formulae that represent definition of a literal by a classic
conjunction of several other literals:

46

47

l ⇔ l1 ∧ . . . ∧ lk

is converted to CNF using the method:

void generate_classic_and_definition(Lit lhs, vec<Lit>& rhs);

⊕ definitions. Formulae that represent definition of a literal by an exclusive
disjunction of several other literals:

l ⇔ l1 ⊕ . . . ⊕ lk

are converted to CNF using the method:

void generate_xor_definition(Lit lhs, vec<Lit>& rhs);

This method uses the generate or definition along with the

void generate_xor_conditions(vec<Lit>& lits);

The last method generates pair-wise disjunctions of literals and therefore
generates a quadratic number of clauses. It can be also used on its own.

& definitions. Formulae that represent definition of a literal by a strong
conjunction of several other literals:

l ⇔ l1 & . . . & lk

are converted to CNF using the method:

void generate_and_definition(Lit lhs, vec<Lit>& rhs);

Conditional definitions. It has been noted that in some cases equivalencies
conditionally hold, i.e., they are implied by a certain condition. For example,

c =⇒ (l ⇔ l1 op . . . op lk)

where op is some connective (∨, ∧, ⊕, &). These are converted to clausal form
using several methods of the form:

void generate_conditional_xxx_definition(

Lit condition, Lit lhs, vec<Lit>& rhs);

9
Representing word-tags

9.1 Word-tag representation in the classical link-parser imple-

mentation

Word-tags for all words are kept in the dictionary. When the dictionary is
parsed word-tags are represented by the n-ary tree structure called Exp and
defined in structures.h. The sentence data structure Sent contains, for each
word, a list Sent::x of expressions from the dictionary. If there are several
dictionary entries for a single word, they are kept in several different trees in
the list Sent::x.

9.2 Basic simplification of word-tags.

When the sentence is created, word-tags can be simplified by eliminating con-
nectors that cannot connect to any other connector in the sentence. This
operation is implemented in the classical link-parser implementation by the
function void expression prune(Sentence sent) implemented in prune.c.
The SAT implementation uses this functionality and calls this function before
the parsing begins.

9.3 Caching information from the word-tags

In order to have effective encoder implementation, once the word-tag expres-
sions are simplified, some information that they contain are converted to more
convenient format and cached for faster further reference. This cached repre-
sentation of word-tags is kept in class WordTag. Basically, this class contains
information about all connectors contained in a word-tag expression. If a word
contains several different expressions they are merged into a single one before
they are cached. This operation will be more thoroughly discussed later. When
this is done, each connector in the sentence is uniquely determined by the word
that it is on (i.e., its word-tag), and its position in the simplified and merged
Exp tree. These positions correspond to the preorder (dfs) traversal of the
tree. Since we tried not to alter any existing code, but only to add the new

48

9.3. Caching information from the word-tags 49

code, a new structure that extends the Connector data-structure defined in
structures.h is implemented.

struct PositionConnector {

Connector* connector;

int word;

int position;

std::vector<PositionConnector*> matches;

...

};

This structure, along with the classic information about the connector (con-
tained in Connector data-structure) also keeps track of the word that this con-
nector is on and its position in the word-tag (i.e., in its expression tree). Also,
what is most important, it contains a collection of all other connectors in this
sentence that this connector could connect to.

The class WordTag represents the word-tag of a single word in a sentence
and it keeps track of all its left-pointing and right-pointing connectors. This
information is available through the following methods:

const std::vector<PositionConnector>&

WordTag::get_left_connectors();

const std::vector<PositionConnector>&

WordTag::get_right_connectors();

It also offers the functionality of getting the information about its specific
connectors.

int WordTag::num_connectors();

const PositionConnector& WordTag::get_connector(int position);

It can be also very quickly checked if this word-tag can match a given
connector (again uniquely determined by its word and position).

bool WordTag::can_match(int wi, int pi);

WordTag objects are build by the SATEncoder once before the parsing starts
and they are frequently used by the encoder during the encoding process while
building the CNF formula.

Note: the notion of whether two connectors match changes depending
whether the sentence contains conjunctions or it does not. The classical link-
parser implementation offers the function int match(Connector* a, Connector*

b, int aw, int bw) which should be used in cases when the sentence does not
contain conjunctions and the function int prune match(int dist, Connector*

a, Connector * b) which should be used in cases when the sentence contains
conjunctions. The reason this is rather subtle: in conjunctive sentences like
“the cat and dog run”, singular Ss+ connector on “cat” and “dog” should
match plural Sp−, while in ordinary sentences “the cat run” it should not.
The class WordTag has to get the reference to the sentence itself, and then it
automatically determines which matching function to use based on the struc-
ture of the sentence. The two matching functions require that internal data
structures of the sentence Sent are computed and this is done once before the
building of the word-tags by calling:

50 Chapter 9. Representing word-tags

build_deletable(sent, 0);

build_effective_dist(sent, 0);

count_set_effective_distance(sent);

10
MiniSAT modifications

In order to use it for the link parsing, the solver MiniSAT had to be adapted
in several ways.

10.1 Adding clauses “online”

As SAT is primarily a decision problem, SAT solvers usually stop the search
process after they find the first model of the formula. Link-parsing application
requires that more than one valid linkage is constructed. Therefore, we had
to make modifications that would allow MiniSAT to continue the search even
after a model has been found and to somehow force it to find models different
than the one that has been found. The simplest way to forbid a model is to add
a single clause that would forbid it. Namely, if model is seen as a conjunction
of literals

l1 ∧ l2 ∧ . . . ∧ lk,

then its negation
¬l1 ∨ ¬l2 ∨ . . . ∨ ¬lk

is a clause that is false in this model and so it forbids it. This clause can
be added to the formula and the search can be restarted. After a model is
found, MiniSAT automatically resets its state to the initial state in which the
assertion trail is empty. This operation discards a lot of work that has been
done and is implicitly stored in the assertion trail data-structure. That is why
we have decided to prevent this. In a modified version of the solver, when the
model is found, the trail remains intact. But this raises another problem. The
method addClause of the MiniSAT solver used for adding clauses expects that
the solver is initial state and that there are not decision literals present on the
assertion trail. In order to make possible to add clauses “online” i.e. to add
them during the search, when the solver is not in its initial state, we had to
implement a new method

void Solver::addClauseOnline(vec<Lit>& clause);

This method uses a non-trivial technique that analyzes if the clause that
is being added is conflict, unit or just an ordinary clause with respect to the

51

52 Chapter 10. MiniSAT modifications

current solver state, and adjusts the state according to the clause that is being
added. If this clause is a conflicting clause (which is most frequently the case in
the scenario where model forbiding clauses are being added), then the standard
conflict analysis procedure is performed and the assertion trail is backtracked
so that the conflict is resolved. Special attention had to be put on the watch
literals of the clause.

10.2 Adding binary clauses

A large percent of the clauses in the inital encoding are binary clauses (i.e.,
clauses that contain exactly two literals). The MiniSAT method addClause

does not treat binary clauses different from other clauses. In order to eliminate
duplicate literals, it calls the method sort. Profiling showed that this method
call takes significant amount of time, and can be omitted for binary clauses
since duplicates can be detected without sorting with just a single comparison.
This cheap tricks reduces the encoding time by few percent.

10.3 Decision strategy

In order to enable guided search, decision strategy (i.e., variable and polarity
selection strategies) had to be altered. This modification did not require much
coding, but is crucial for solver efficiency. MiniSAT maintains heap contain-
ing variables sorted descending by their decision priority. Decision priorities
directly correspond to so called variable activities which are constantly and
dynamically updated during the search process. When a decision needs to be
made, the top variable of the heap (the one with the highest priority i.e., activ-
ity at that point) is selected. Depending on the polarity selection strategy, this
variable is assigned always negative, always positive or always random polarity.
In order to implement static decision priorities for variable that guide the SAT
we used the built-in heap and variable activity vector. The code was extended
so that these numbers can be set before the search starts. The lines of code
that dynamically update variable activities are excised so that all variables
have their initial decision priorities during the search. Polarity selection strat-
egy is done using the preferred polarity that is also specified for each variable
before the search starts. Priorities can be arbitrary floating point numbers and
their order is only thing that matters. Polarities must be numbers from [0, 1].
Polarity is selected using the random number generator which generates a ran-
dom number from [0, 1). If that number exceeds the given polarity number the
polarity is set to true, and otherwise it is set to false.

Part III

Evaluation

11
Results

First we give run-time results for the encoding that does not support conjunc-
tive sentences.

Sentence no. Encoding First model Relevant model All models

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00

54

12
Conclusions and further work

Project outcome. The main outcome of this project is that a fully func-
tional link-parser based on SAT solving has been developed and implemented.
Both the theoretical foundation and an implementation alternative to the clas-
sic one have been developed. That would not been possible if a large amount
of the classic link-parser codebase had not been used. However, the central
search component of the parser is written from scratch and it completely relies
on the SAT solving technique.

Complexity of link-grammars. The classic link-parser implementation is a
non-trivial piece of software that has been developed for many years. Although
the paper [1] is a great introduction into the SAT encoding of link-grammars,
it contained some minor errors that had to be corrected in order to get a valid
encoding. Also, the link-grammar formalism is much more complicated then
it has been anticipated in this paper and the project proposal. Some of the
important link-grammar features that have not been mentioned in [1] are for
example:

• dealing with conjunctive sentences,

• post-processing,

• arbitrary boolean structure of the word-tags,

• unusual semantics of link-grammar connectives & and or,

• connector matching rules – unification of connectors and forming of con-
nector labels,

• different pruning techniques – power pruning, pp pruning etc.

• etc.

In order to get a fully functional parser, during the project duration all
these features had to be invented and implemented. Some of these show to be
easy to solve, but some (e.g., conjunctive sentences) showed to be extremely
hard and required complicated algorithms and much work and time.

55

56 Chapter 12. Conclusions and further work

Comparison of DNF and CNF approach. Carefull examination of clas-
sic link-parser implementation shows that it uses sophisticated DNF based
algorithms. On the other hand, SAT based link-parser is uses CNF based
algorithms.

DNF based algorithms used in classic link-parser imlementation suffer from
the problem that the number of disjuncts can become unmanageably large for
sentences that are long and complicated. The time and memory required for
generating and storing the DNF formula becomes inacceptably large. CNF
based approaches do not suffer from these problems. Even for very long and
complicated sentences, formulas remain manegeable and are generated reason-
ably fast. On the other hand, once the DNF formula is constructed classic
implementation can perfrom the search for satisfying solutions very fast. This
indicates that a breaktrough with the SAT approach can happen with long and
complicated sentences which are the bottleneck of the classic implementation.
However, the search time for the CNF formula grows with the formula and can
be very long for complicated formulae.

Problem structure. One of the main drawbacks of the proposed SAT ap-
proach is that it does not use the information about the problem structure.
Namely, planarity conditions imply that whenever a link between two non-
neighboring words wi and wj is established, the problem is divided in two com-
pletely independent components. The “outter” component consists of words
between the left-wall and wi and words between wj and the right-wall, and
the “inner” component consists only from words that are between wi and wj .
Establishing links in one of these two components cannot have any effect on the
other one. Classic DNF based link-parser implementation uses this information
and whenever it establishes a link, it examines the inner component exhaus-
tivelly (assuming it is smaller then the outter) and constructs all solutions for
the inner component. Since the solutions of the inner component depend only
on a single link between words wi and wj that has been established in the beg-
gining, the classic implementation uses the memoization technique and keeps
track of the whole solution set for the inner component. Whenever the same
link between wi and wj is established in the future, the memorized solution set
is returned and there is no need for solving the same inner component again.

The SAT solver does not have this global information about the problem
structure available, and it does not use the fact that a link splits the search
space to two independent components. The SAT search continues to jump be-
tween the two components and usually spends a lot of time solving the larger,
outter component. It usually turns out that the inner component is unsatis-
fiable, but this is detected quite late, when a lot of time has been wasted in
examination of the outter component. Instead of memoization, SAT solvers
use the learning which, as a general technique, cannot compete with the mem-
oization that takes into account the specific structure of the problem.

Performance analysis. Underlying algorithms of the classic link-parser im-
plementation are used in a way which both enables and requires enumerating
all valid parses of a sentence. Only when all linkages are constructed, they are
sorted according to some parse rankig order and best linkages are reported.
General purpose SAT solvers cannot outperform these specific sophisticated

57

algorithms that take into account the specific problem structure when it comes
to enumerating all syntactically valid linkages of a sentence. However, since
formula generating time is usually signifficantly smaller in the CNF approach,
the first several linkages of the sentence can be found significantly faster then
in the DNF based, classic approach.

Having in mind the unexpected complexity and plethora of features of the
link-grammar formalism, it has been a very hard task to develop an imple-
mentation during the limited project duration period that would significantly
outperform the classic implementation. However, the results given clearly show
that the SAT based parser that has been developed can in many cases find sev-
eral valid linkages of a sentence in significantly less amount of time than the
classic implementation does.

In the authors opinion, there is still much space for improving performance.
This should be done in several major directions: (i) exploiting the specific
problem structure during the SAT search (ii) implementing good search guiding
schemes (iii) improving the SAT encoding of conjunctive sentences.

Guiding. In order to guarantee that the semantically valid linkages are among
the first several found, an advance semantic/statistic search guiding scheme has
to be developed. The SAT based parser that has been developed offers its de-
velopers an API that enables them to implement and experiment with different
guiding schemes, without the need to know all the SAT encoding details and
details about the SAT implementation. During the project, several prototype
guiding schemes are implemented. In order to further improve efficency of
the search more advance guiding schemes must be developed. This is left for
further work, because of the duration period of the project.

It has been observed that guiding heuristics has much effect on the efficiency
of the search. Experiments show that if the guiding heuristic makes a single
wrong decision early in the begining of the search process, this can seriously
downgrade the performance. Although better guiding heuristic can minimize
this effect, the improvement of the overall guiding strategy and making it more
robust would be quite beneficial and neccessary for the future developement.

Conjunctive sentences. The toughest part to implement was the support
of conjunctive sentences by using the fat-link technique. The classic link-parser
implementation also pays very much attention to conjunctive sentences. Con-
junctive sentence handling represents a very large percentage of original imple-
mentation code. Experiments with the classic link-parser implementation show
that long conjunctive sentences are critical for its performance, and that classic
link parser implementation fails to solve many of them in a reasonable amount
of time. Although this problem showed up to be crucial, it has not been an-
ticipated when the project proposal was written and the project proposal does
not mention it. Since the conjunctive handling mechanism is the weakest fea-
ture of the classic link-parsing implementation, it has been decided to spend
almost one half of the project period to implement conjuncting handling in
the SAT based parser. This has been done and the encoding of conjunctive
sentences has been completely implemented what makes the SAT based parser
fully functional.

58 Chapter 12. Conclusions and further work

Final conclusion. The developed SAT based link parser implementation is
fully functional and it often outperforms the classic link-parser implementa-
tion when it comes to enumerating just first several syntactically valid linkages
according to some search guiding criterion. Even with using the prototype
guiding schemes, the semantically correct parses are usually among the first
ones found. Still, it cannot yet be said that it “significantly (by an order of
mangnitude) outperforms” the classic implementation as it has been hypothe-
sized. It is the authors opinion that this result could potentially be achieved
if yet more work is invested in developing guiding schemes and impoving the
SAT encoding, especially for the conjunctive sentences, but this still remains
just a hypothesis.

A
Sentences

+--------------------------Xp--------------------------+

+---------------------Wd---------------------+ |

| +------------------CO-----------------+ |

| +----------------Xc----------------+ | |

| +---Js--+ | | |

| | +--Ds-+----Mv---+---MVpn---+ | +-Ss-+ |

| | | | | | | | | |

LEFT-WALL in a letter.n published.v yesterday , he spoke.v .

+------------------------------Xp-----------------------------+

+------Wd------+ +----Pg*b---+-----MVp-----+ |

| +---G--+--Ss--+-Ce-+-Ss+--N-+ +---Os--+ +-J+ |

| | | | | | | | | | | |

LEFT-WALL Fidel Castro said.v he was.v not saying.v Goodbye to me .

+---

|

| +----Jp----+ +------------Jp----

+--Wd--+-Ss+---Pvf---+---MVp--+ +-D*u-+--Mp-+ +------A

| | | | | | | | |

LEFT-WALL he was.v recognized.v for.p his work.n for.p cross-cultural

----------Xp--

+----------------Js---------------

-------+ | +-------------DG-------------

h------+-----Mp----+---Jp---+---Mp--+ | +-----G-----+---G---

| | | | | | |

understanding.n through groups.n like.p the International Visitors Cou

----------------+

+ |

+ |

+--MG-+-JG-+ |

| | | |

ncil of Detroit .

59

60 Chapter A. Sentences

+--------------------------------Xp-------------------------------+

| +-----Wdc----+ +-----Op-----+ +----Jp---+ |

+--Wc--+ +--D*u-+--Ss-+-PPf-+ +--Dmc-+--Mp-+ +-Dmc-+ |

| | | | | | | | | | | |

LEFT-WALL but this.d room.n has.v had.v other uses.n over the years.n .

+---

+-----------------------Wd----------------------+

| +------------------CO*s------------------+

| +------------------Xc-----------------+ |

| | +-----------Os-----------+ | |

| | | +--------Ds--------+ | | +----

| +Cs+--Sp-+ | +--G--+--AN-+ | +--Sp-+---I--+ +

| | | | | | | | | | | | |

LEFT-WALL if you visit.v the BigThink Web site.n , you will.v find.v a

-Xp---+

|

|

|

+-------Js------+ |

Os---+ | +-----Ds-----+ +---Js---+ |

--Ds-+--Mp-+--Jp--+----Mv---+-MVp-+ | +---A--+-Mp-+ +--Ds-+ |

| | | | | | | | | | | |

series.s of subjects.n listed.v on the left.a side.n of the page.n .

Bibliography

[1] P. Janičić, B. Goertzel, Parsing Based on Link-Grammars and SAT
Solvers, unpublished draft paper.

61

	Contents
	Introduction
	Overview of the project and the main results
	Background

	Encoding
	Word-tags and their satisfaction
	Syntax of word-tag expressions
	Semantics of word-tag expressions
	Word-tag satisfaction encoding
	Conjunction order constraints
	Cost cut-off

	Global constraints
	Planarity
	Connectivity
	Post-processing

	Conjunction free sentences.
	Conjunctive sentences
	Introduction to fat-links
	Fat-link conditions - encoding
	Different link types - examples
	Different link types - encoding

	Guiding

	Implementation
	Mapping between variables and numbers
	Variables to numbers: string to int mapping approach
	Variables to numbers: int tupples to int mapping approach
	Numbers to variables

	CNF conversion routines
	Representing word-tags
	Word-tag representation in the classical link-parser implementation
	Basic simplification of word-tags.
	Caching information from the word-tags

	MiniSAT modifications
	Adding clauses ``online''
	Adding binary clauses
	Decision strategy

	Evaluation
	Results
	Conclusions and further work
	Sentences
	Bibliography

